Annexe n° 3 : variations saisonniéres de la durée du jour solaire ;
équation du temps.
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I: Les deux causes de la variation de durée du jour solaire.

Nous avons vu Partie II §2 que la durée du jour solaire fluctue autour de sa valeur
moyenne (24h) en fonction de la saison. Il s'agit ici d'analyser les deux causes de cette variation.
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I.1. Les variations saisonniéres de la vitesse du soleil.

L —
Je reproduis ci-contre la s5 S11 Fapheiie

S6

trajectoire du centre du soleil dans
le référentiel géocentrique : il s'agit
d'une ellipse dont le centre de la
terre est un foyer (noté F); la
période (durée d'un tour), notée T
est égale a une année sidérale.
Pour la clarté de la figure,
I'excentricité est fortement
augmentée par rapport a la réalité. s
On note S1, S2,..., S20 vingt
positions successives du centre du s
soleil occupées aux
dates respectives :  tl, t2 =
t1+T/20 , t3 = t2+T/20, t4 = t3 +
T/20... La date tl1 correspond a un
passage au périhélie. La durée
entre deux positions successives
est toujours la méme: un
vingtiéme de période. En tracant les segments (O S;), (O S;),...(0 Sy), on divise la
surface délimitée par l'ellipse en vingt secteurs. La loi des aires, énoncée par
Képler, stipule que, dans la mesure ou les durées des parcours successifs
(S1S2), (S2S3)...(S19S20) sont égales, les aires des différents secteurs sont égales.
Ainsi, l'aire du secteur délimitée en rouge est égale a l'aire du secteur délimitée en
vert.
Conséquence de cette loi : Les distances (FS;) et (FSy) étant nettement inférieures aux
distances (F'Sy) et (FSy,) 1'égalité des aires des deux secteurs « vert » et « rouge » n'est
possible que parce que la distance parcourue par le centre du soleil de Sy a Sy est infé-
rieure a celle parcourue de Sy a S;. Les durées de ces deux parcours étant égales, la vi-
tesse entre Sy et Sy est nécessairement inférieure a celle entre Sy et S;.

Ainsi, la vitesse du centre du soleil varie : elle est maximale au passage
au périhélie (le 4 janvier : 1,019 degré par jour) et minimale au passage a
l'aphélie (le 4 juillet : 0,953 degré par jour) pour une valeur moyenne de 0,986
degré par jour.

S10

S1

S20

S$16 $17

L1.2. Influence de I'excentricité de la trajectoire du soleil sur la durée du jour
solaire.

On peut reprendre le raisonnement fait (Partie I1.3, remarque 2) en 1'adaptant a
la différence entre le jour solaire (durée Js) et le jour sidéral (durée Jst). En trés bonne
approximation, on peut considérer la différence (Js — Jst) comme la durée nécessaire
au projeté M1 du méridien de référence sur la sphere céleste a tourner de 1'angle «, cet
angle étant celui dont tourne le soleil en un jour sidéral.

Soit Qs La vitesse angulaire du soleil le jour considéré (les variations de Qs étant tres
lentes, on peut considérer cette grandeur comme pratiquement constante sur un jour) :
a = Qg Jst avec Qg en tour par heure et Jst en heures.
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Soit Oy la vitesse de M; en tour par heure. On obtient :

o Jst Q2 ) O
Js—Jst = 0 - O soit : Js = Jst- 1+Q

M1 M1 M1

Liécart par rapport au jour solaire moyen (Jm = 24h) vaut finalement :
Qs
Js—Jm = Jst- 1+Q —Jm
M1
MietS
| Ay
M1etS . M1
Equateur terrestre
Ecliptique confondu avec Equateur celeste
midi solaire jour J midi solaire jour J + 1jour stellaire midi solaire jour (J + 1)
Les éphémérides per-
mettent le calcul de Qg . 10
Les autres grandeurs de g
la formule ont déja été &
évoquées. La courbe ci- 4
dessous représente les |
. . Q

variations au cours de E
l'année 2015 de l'écart § 0 50 100 150 200 250 300 350
(Js-Jm) exprimé en se- 4
condes. L'écart est maxi- 6

mum lorsque le soleil a
sa vitesse maximale,
c'est a dire le 4 janvier ; N=dwiourdelinnce

cet écart est minimum

lorsque le soleil a sa vitesse minimale, c'est a dire le 4 juillet. Cet écart varie
périodiquement : on retrouve le méme écart lorsque le soleil retrouve une méme
position sur sa trajectoire. La période est donc égale a une année sidérale.

B,
o &

L1.3. Influence de I'obliquité sur la durée du jour solaire.

La courbe précédente montre que l'écart (Js-Jm) dia a la seule variation de
vitesse du soleil ne dépasse pas huit secondes. Or les mesures montrent que cet écart
peut atteindre 30s. Il existe donc une autre cause aux variations de durée du jour

solaire !
Remarque : le raisonnement que nous allons faire présente quelques similitudes avec celui sur l'in-
fluence de la précession des équinoxes sur le jour sidéral (Partie IV §3).
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Pole nord celeste Pole nord celeste

equinoxe d’ autom solstice
””” % d’ete

equinoxe d’automne

equinoxe de printemps.

)

solstice
d’ete

*\._equinoxe de printemps

solstice
d’hiver

La figure de gauche correspond au centre du soleil (en jaune) passant par le
point vernal : nous sommes a l'équinoxe de printemps. Dans son mouvement sur
I'écliptique, la vitesse du soleil (représentée par la fleche rouge) a deux composantes :
une composante d'ouest en est (représentée par la fleche bleue) et une composante
orientée vers le nord (représentée par la fleche verte). L'existence de la composante
vers le nord a une conséquence familieére : a cette période de 1'année, le soleil est de
plus en plus haut sur l'horizon a heure fixe. Pour la détermination de 1'heure et donc
pour la durée du jour solaire, seule compte la composante d'est en ouest et celle-ci est
au début printemps égale a seulement 91,75 % a la vitesse réelle du soleil.

La figure de droite correspond au solstice d'été (la partie «arriere» de
I'écliptique n'est pas représentée). Dans ce cas particulier, la vitesse du soleil n'a pas
de composante vers le nord ou le sud : la composante est-ouest de la vitesse du soleil
représente 100 % de la vitesse réelle.

Entre le solstice d'été et le solstice d'hiver, le raisonnement est analogue, la
fleche verte étant orientée vers le sud : a cette période de 1'année, le soleil est de plus
en plus bas sur I'horizon a heure fixe.

Conséquence, dans le calcul de 1'écart (Js — dm), il faut multiplier la vitesse du
soleil par un terme correctif R :

R-Q,

1+
QMl

Js—Jm = Jst- —Jm

R varie en fonction de la saison selon le tableau de variations ci-dessous :

Dates Solstice Equinoxe de Solstice Equinoxe Solstice
d'hiver printemps d'été d'automne d'hiver
année A année
A+l
variations 1 1 1
de ~ A N 2
R 0,9275 0,9275

Ainsi R varie périodiquement avec une période d'une demie année tropique.
Puisque (Js — Jm) augmente avec R, la contribution de l'obliquité a 1'écart (Js — dm)
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varie suivant un tableau de variation analogue. Cette contribution correspond a la
courbe verte.

30
20

10

= |0} des aires
influence obliquité
- @cart total

350

écarts en secondes par jour

N° du jour de I'année 2015

Lécart total correspond a la courbe bleue. Cet écart est maximum vers le 22
décembre : cette date correspond a un maximum de R et a une valeur élevée de Qg car
le soleil est proche du périhélie (atteint le 4 janvier).

Remarque : l'écart total (Jm-Js) ne varie pas de facon rigoureusement périodique dans la mesure ou
il fait intervenir des phénomenes de périodes différentes : année sidérale d’'une part, demie année
tropique d’autre part. De plus ces périodes ne sont pas égales a la durée moyenne de l'année civile.
Ainsi, les maximums et minimums ne seront pas obtenus les mémes jours du calendrier selon
l'année étudiée. Cependant, année tropique, année sidérale et année civile moyenne ont des durées
trés proches : les modifications des courbes ci-dessus, d'une année a l'autre sont tres faibles...

I : Equation du temps.

Nous savons que ['heure solaire dépend de la longitude. Nous allons donc
d’abord faire notre étude en placant l'observateur terrestre le long du méridien de
Greenwich. Nous verrons ensuite les corrections a apporter pour des longitudes
différentes.

IL.1. Définition de I'équation du temps.

Remarque préliminaire : le mot « équation » n'a pas ici son acception usuelle mais plutét celle plus
ancienne de « terme correctif » a apporter a une grandeur.

Avant la généralisation des montres, alors que les cadrans solaires étaient nom-
breux, I'équation du temps (notée E;) a été définie comme la durée qu'il faut ajouter a
I'heure lue sur un cadran solaire (heure solaire vraie : Hsv) pour avoir 1'heure solaire
moyenne Hsm (en Angleterre : heure solaire moyenne = heure légale ou heure légale
moins une heure 1'été) :

Hsm = Hsv + E; soit E; = Hsm - Hsv.
D'ailleurs, la courbe annuelle d'équation du temps était souvent exposée (souvent sous
forme d'analemme) a c6té du cadran.
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Remarque : bien que la majorité du territoire francais métropolitain appartienne au fuseau horaire
centré sur Greenwich, nous avons : heure légale = heure solaire moyenne de Greenwich plus une
heure l'hiver et plus deux heures l'été : nous sommes restés a l'heure solaire allemande ['hiver...
L’équation du temps est une grandeur algébrique. Supposons Et > 0 : 4 Hsm = 12h,
le cadran solaire indique une heure Hsv inférieure ; il n'est pas encore midi solaire
vrai ; le soleil réel est en retard sur le soleil fictif moyen. Inversement, une
valeur négative de Et correspond a un soleil en avance sur le soleil moyen.
Cette définition est toujours celle adoptée en France (les anglo-saxons adoptent la
convention de signe opposé).

Dans ces
CODditiOl’lS, l'équation du GRAPHE DE L'EQUATION DU TEMPS (2015 )

Temps en minutes & ajouter au Temps Solaire pour obtenir le Temps Moyen
temps apparait comme le -

cumul des écarts (Js-Jm) “ //\

au fil du temps. Bien sir, 2
cet écart cumulé ne croit 0
pas infiniment puisque la ’
valeur moyenne de (Js —

Jm) est nulle, par p /

définition méme de la . \ / ! /
valeur moyenne. :

L'équation du 4 \ /
temps ainsi que les : N

coordonnées des planetes s
du systeme solaires S
peuvent étre obtenus a
l'adresse suivante :

-1

-12

13

-14 !

-15 1 \
-16

-17
-18

T 4124 1 91 291 14 28 4 M 2109 121 A M2t A 20 U A28 4 A9 21 1 #1 et 4 1t 21 A 24 3
janvier février mars avril mai juin juillet aodt septembre  octobre  novembre décembre

http://pgj.astro.free.fr/position-planetes.htm . De nombreux logiciels téléchargeables
gratuitement permettent le calcul de E; et trace la courbe représentant les variations
de E; au cours d'une année. Voici par exemple ci-dessus le résultat obtenu avec le
logiciel SHADOWS pour l'année 2015.

I1.2 Influence de I'excentricité sur I'équation du temps.

Pour cette étude, nous étudions la seule influence de l'excentricité : nous supposons donc
l'obliquité nulle : les plans de l'équateur et de l'écliptique sont considérés comme confondus. Le
repére a pour origine O le centre de ['ellipse décrite par le centre du soleil, l'axe (OX) est orienté du
centre de l'ellipse vers l'aphélie. Dans un premier temps, nous allons construire cette ellipse.

I1.2.1 Anomalie moyenne, anomalie excentrique, anomalie vraie, équation de
Képler.

Attention : dorénavant, en absence de précisions, les mesures d'angles seront
exprimées en radians plutot qu'en degrés.
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La méthode a déja été expliquée en fin d'annexe 1 ; on trace (en pointillés rouges) un
cercle de rayon a, de centre O (centre de l'ellipse) et a tout point Mc de ce cercle, carac-
térisé par l'angle polaire E, on fait correspondre un point S de l'ellipse de méme abs-
cisse mais d'ordonnée multipliée par b/a. L'angle polaire E est appelé anomalie ex-
centrique. Le foyer F de l'ellipse correspond au centre de la terre, il est a la distance c
= e.a du centre O (pour améliorer la clarté de la figure on choisit une valeur de e beau-
coup plus grande que la valeur réelle).

On trace également (en pointillés bleus) la trajectoire du centre Sf du soleil fictif défini
page 13 du document principal. Sf tourne a vitesse angulaire constante sur un cercle
de centre F et de rayon a. Il effectue un tour en une durée T égale a la durée d'un tour
du soleil réel sur son orbite elliptique. L'angle polaire entre (FX) et (FSf) est noté M et
appelé anomalie moyenne. Prenons l'origine des dates a un instant ou Sf coupe 1'axe
(OX). Si Sf tourne de 2.1t radians (360°) pendant la durée T, pendant la durée t il
tourne de :

27
S

M = t .

A ce stade, nous connaissons la trajectoire de S, nous savons positionner Sf & n'importe
quel instant sur sa trajectoire circulaire, mais nous ne savons pas encore positionner S
sur sa trajectoire elliptique a la date t. Pour ce faire, il faut connaitre la valeur de
I'angle polaire E a la date quelconque t. Nous allons appliquer la loi des aires : l'aire
balayée par F'S entre la date zéro et la date t doit étre proportionnelle a t et la durée T
doit correspondre a une aire balayée égale a celle délimitée par l'ellipse : .a.b . Laire
A balayée par (F'S), entre les dates zéro et t (coloriée en bleu sur le schéma) doit donc
vérifier la relation :
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m-ab

T
Exprimons cette aire en fonction de 'anomalie excentrique E. Exprimons d'abord l'aire
S; du secteur circulaire de rayon a correspondant a l'arc PMc . Lorsque le rayon OM¢
tourne d'un tour, soit 2.7 radians, il balaie 1'aire totale du disque soit m.a?; lorsqu'il
tourne de l'angle E (mesuré en radians), il balaie 1'aire :
na-E _ a-E

2w 2
Exprimons maintenant l'aire S; du triangle (OFM¢). Cette aire est égale au demi
produit de la hauteur Y, du triangle par sa base : OF =c =a.e;

S, = —a-sin(E)-a-e = l-az-e-sin(E)

2 - 2
Laire S; de la surface délimitée par 1'arc PMc et les segments (FP) et (FM¢) est :

S, = §,-S, = %-az-(E—e-sin(E)) :

A =

t .

S, =

Appliquons a tout point du contour dont on vient de calculer l'aire S; la transformation
déja utilisée : a tout point de ce contour, on fait correspondre un point de méme
abscisse mais d'ordonnée multipliée par le rapport b/a ; L'arc de cercle PMc se
transforme en la portion d'ellipse PS ;le segment (FM¢) se transforme en segment
(FS) et le segment (FP) se conserve (multiplier 1'ordonnée nulle de tout point de (FP)
par b/a donne zéro). Le raisonnement déja utilisé en fin d'annexe 1 pour déduire l'aire
délimitée par l'ellipse de 1'aire du disque permet d'affirmer :

b 1 ' .
A= 5-53 = E-a-b'(E—e-sm(E)) :
Or:
2.7 m-ab

M = T-t et A = -t . Par substitution: A = %-a'bM

T
Par identification, on obtient 1'équation démontrée pour la premiere fois par
Képler :

|E—e-sin(E) = M]|.

M étant connu a la date t, la résolution de 1'équation de Képler donne la valeur de E a
la date t, ce qui permet d'obtenir les coordonnées polaires de S par les formules
démontrées en annexe n°1 :
\distance FS = r = a{1—e-cos(E))|;
sin (E)
cos(E)—e
L'angle polaire v est appelé anomalie vraie du soleil.

Remarque : l'usage du mot « anomalie » pour désigner des angles peut surprendre : il dérive de
U'adjectif « anomal » qui signifie : « présente des irrégularités ».

tan(v) = avec sin(v) de méme signe que sin(E).

I1.2.2 Influence de l'excentricité sur 1'équation du temps : équation du centre.

Le cercle de la figure représente 1'écliptique de centre F : centre de la terre. Sf et
S désignent respectivement les intersections avec la sphere céleste des droites passant
par F et les centres du soleil fictif et du soleil véritable. M; représente le projeté sur la
sphere céleste de l'intersection du méridien de Greenwich avec 1'équateur. Nous
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continuons a confondre écliptique et équateur céleste. Lorsque M; rattrape S, il est
midi solaire vrai : Hsv = 12h. Il n'est pas encore midi solaire moyen : Hsm < Hsv. La
différence (Hsv — Hsm) représente 1'équation du temps due a la seule influence de
I'excentricité : on 1'appelle traditionnellement équation du centre : Etc.

Etc = Hsm - Hsv en supposant 1'obliquité nulle.
On rappelle que M; tourne environ 365 fois plus vite que S et Sf. Dans ces conditions,
Etc représente le temps que met M; pour se déplacer de S a Sf, soit tourner de 1'angle
(M - v). Nous avons déja montré que M; tourne par rapport au soleil de 1° toutes les
quatre minutes. Cela conduit a :

Etc = 4.(v - M) avec Etc en minutes et ( v - M) en degrés.

I1.2.3 Exemple de détermination de 1I'équation du centre.

Pour illustrer ces propos, nous allons déterminer l'équation du centre sur le méridien de
Greenwich & une date choisie au hasard : le 1 aoiit 2015 & 12h (heure solaire moyenne).

Le livre de Jean MEEUS évoqué en introduction fournit la valeur de l'anomalie
moyenne a cette date : M = 206,576° = 3,6054rad.
Lexcentricité de l'ellipse vaut : e = 0,0167. Il faut maintenant trouver la valeur de
I'anomalie excentrique vérifiant 1'équation de Képler. Cela n'a rien d'évident car il
n'existe pas de solution explicite a une telle équation. Le plus simple est d'utiliser un
logiciel scientifique ou a défaut une calculatrice programmable. Par exemple : la
commande « fsolve » du logiciel MAPLE ou du logiciel MATLAB donne immédiatement
le résultat :
E = 3,598rad.

On en déduit : tan(v) = 0,4820 avec sin(v) < 0. D'ou : v = 205,736°.
Ainsi I'équation au centre a cette date vaut :

Etc = 4.(205,736 - 206,576) = - 3,362min.
Si la loi des aires était la seule cause des variations de durée du jour solaire, le soleil
serait le 1 aolt 2015 en avance d'un peu plus de 3min sur le soleil moyen.

Cette séquence de calculs
peut étre refaite pour tous les jours
de l'année, ce qui permet de tracer
la courbe ci-contre ou les abscisses
sont les numéros des jours de l'an-
née 2015 et les ordonnées les va-
leurs de Etc mesurées en minutes.
On constate que lellipticité de la
trajectoire provoque un décalage
entre 1'heure solaire vraie et 1'heure
solaire moyenne pouvant atteindre
pres de 8min.

0 50 100 150 200 250 300 350 400

I1.3 Influence de l'obliquité sur
I'équation du temps.
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I1.3.1 Les coordonnées géocentriques écliptiques du soleil.

On peut repérer le centre S
du soleil et le centre Sf du soleil
fictif par leurs coordonnées
écliptiques. La position d'un astre
quelconque M peut étre repérée
par la mesure de deux angles : la
longitude écliptique L et la latitude
écliptique notée A. (voir figure ci-
contre). Les latitudes de S et Sf
sont évidemment nulles a chaque
instants. Lorigine des longitudes
est le point vernal alors que
l'origine des anomalies est le
périhélie. Nous avons donc :

Latitude du centre S
dusoleil : L = v ;

Latitude du centre Sf
du soleil fictif : Lf = M.
Cependant l'écart angulaire entre
les droites (FS) et Fsf) est
indépendant de 1'origine choisie pour les angles. On peut donc poser a chaque instant :

L-Lf=v-M;ou:L=Lf+v-M

La valeur de Lf est donnée par les tables astronomiques ; selon Jean MEEUS, le 1 aout
a 12h solaire moyen : Lf = 129,785°.
Létude de I'équation au centre a conduit a : v = 205,736° ; M = 206,576°.
d'ou :

L =129,785 + 205,736 - 206,576 =128,944°.
Dans la base directe orthonormée (X,Y,Z) (représentée en bleu), dans le cas

particulier ou le point M est sur 1'écliptique, donc confondu avec m, on peut écrire en
choisissant le rayon de la sphére céleste arbitrairement égal a 1:
OM = cos(L)-X+sin(L)-Y

I1.3.2 Les coordonnées
géocentriques équatoriales
du soleil.

Nous l'avons déja expliqué :
I'heure solaire dépend de Ila
position du projeté du centre S du
soleil sur lI'équateur, c'est a dire de
I'ascension droite o« du soleil que
nous avons déja définie page 6,
schéma n° 6 du document
principal. Il s'agit donc de déter-
miner l'ascension  droite
connaissant la longitude écliptique
L.




- -

Choisissons la base orthonormée directe représentée ci-contre en vert (7,7 ,w) ou #
dirige (O y) et ) est orienté vers le pdle nord. Les coordonnées d'un point M

quelconque de la sphere céleste sont les coordonnées sphériques de ce point ; on choisit
la sphere céleste de rayon 1 :

OM = cos(d)-cos(o)-Ti+cos(8)-sin (o) v+sin(d)-w .
On passe d'une base orthonormée a l'autre par une rotation autour de l'axe (Oi)

X=u

d'angle € . On obtient ainsi: | ¥ — cos (& )-b+sin(e) i - D'ou une nouvelle expression du

Z=—sin (¢)-v+cos(e)-w

vecteur position:
OM = cos(L)-ti+sin(L)-cos(e)-V+sin(L)-sin(e) w

Par identification des deux expressions du vecteur position, on obtient trois égalités :

(1) cos(L) = cos(d)-cos(a)

(2) sin(L)-cos(e) = cos(d)-sin(ct)

(8) sin(L)-sin(e) = sin(d)
La relation (3) permet de déterminer la déclinaison ; elle est sans intérét pour notre
étude de I'heure. Une « division membre a membre » de (2) par (1) conduit a :

tan (o) = cos(e)-tan(L)
En remarquant que le cosinus de la déclinaison est toujours strictement positif
puisque la déclinaison est toujours inférieure a 90° et supérieure a (-90°), la relation
(1) permet d'affirmer que cos(x) est toujours du signe de cos(L).
Conclusion : il est possible de déterminer l'ascension droite en fonction de la
longitude écliptique en calculant la tangente de cet angle puis en
s'intéressant au signe de son cosinus :
'tan (o) = cos(e)tan (L) | avec cos(x) de méme signe que cos(L).

Ainsi, le 1 aolit 2015 a 12h solaire, nous avons :
tan(a) = cos(23,437°).tan(128,944°) = -1,1353 avec cos(LL) < 0.
D'ou l'ascension droite du soleil :
x =131,375°.

I1.3.3. Calcul de 1'équation du temps.

Le plan de la figure ci-contre est le
plan équatorial, le centre de la terre étant
noté O. Le projeté S1 du soleil est repéré par
son ascension droite «. Le soleil fictif (ou
soleil moyen) est repéré par sa longitude
écliptique Lf.

Remarque : pourquoi repérer Sf par Lf alors
que nous raisonnons dans le plan équatorial
et non dans le plan écliptique ? Sf est défini
dans le cas fictif ou l'excentricité et l'obliquité
sont nulles; dans ce cas fictif, le plan
équatorial se confond avec le plan écliptique :
ascension droite et longitude écliptique se
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confondent !
Raisonnons dans le cas de la figure ou :
x> Lf.
Le méridien de Greenwich rencontrera Sf avant de rencontrer S1, le soleil réel est en
retard par rapport au soleil fictif moyen : E; > 0. L'équation du temps représente la
durée mise par le méridien de Greenwich a tourner de 1'angle (x - Lf). D'ot I'expression
générale de 1'équation du temps mesurée en minutes :
E; = 4.(x - Lf) avec « et Lf mesurés en degrés.
Le 1 aotit 2015 cela donne :
E,=4.(131,375 - 129,785) = 6,3613min.
Remarque 1 : Les tables des éphémeérides donnent & cette date : E; = 6,3567min ; l'écart —
extrémement faible (a peine 3 dixiémes de seconde) - s’explique par le fait que nous avons négligé la
nutation.
Remarque 2 : Nous avons déja montré : E, =4.(v- M) = 4.(L — Lf). Afin de faire intervenir l'équation
au centre dans l'expression de l'équation tu temps, on peut poser :
E =4 (x-Lf)=4(L-Lf) +4.(x- L).
4.(x - L) représente la contribution & l'équation du temps de la projection du soleil vrai sur le plan
de l'équateur, c’est a dire l'influence sur l'équation du temps de l'obliquité. Elle est appelée

réduction a l'équateur E;x.
Ei =4.(x- L).

GRAPHE DE L'EQUATION DU TEMPS (2015
Temps en minutes a ajouter au Temps Solaire pour obtenir le Temps Moyen

© 03I N ®» r o0 o
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4 @i 24 1 2100 4 29 4. 38 24 A sl 29 T M1 21 1 44 21 T A 2 1 4 21 4 99, 24 1. 41 21 9 41 24 3
janvier février mars avril mai juin juillet aolt septembre octobre novembre décembre

Ainsi : E; = E,;. + Ei. Les trois courbes sont représentés ci-dessous pour l'année 2015, en bleu : E,
en rouge E,, en vert Ex. Remarque 3 : les courbes représentant (page 66) les écarts journaliers (dJs-
Jm) peuvent étre considérées comme les trois courbes dérivées des courbes de l'équation du temps (la
correspondance des couleurs est respectée). Si (Js —Jm) > 0, le cumul de ces écarts tend & augmenter,
st (Js —Jm) < 0, le cumul des écarts tend a diminuer et enfin : (Js —Jm) = 0 ne crée pas de variation
de E; : nous avons ce jour-la un extremum de E..
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Remarque 4 : conséquence de la remarque 3 : les remarques faites page 4 de cette annexe a propos de
la périodicité des courbes s'appliquent respectivement aux trois courbes représentant E,, Ex et E,.
Les courbes annuelles varient trés peu d'une année & l'autre. Pour illustrer ce propos, je reproduis ci-
dessous les courbe annuelles de l'équation du temps décalées de trois siecles : en rouge pour
l'année 1815, en bleu pour l'année 2115. Les écarts restent tres faibles : au plus une cinquantaine de
secondes fin juillet.

equation du temps en minutes

_20 | 1 | | 1 | 1
0 50 100 150 200 250 300 350 400

Numero du jour de I'annee

IL.4. Influence de la longitude sur I'heure solaire vraie.

Les raisonnements précédents s'appliquent en un lieu sur le méridien de
Greenwich (longitude Lg = 0). Pour la clarté des notations, les grandeurs mesurées sur
le méridien de Greenwich seront affectées de 1'indice G. Nous avons ainsi :

Hst = HsmG - EtG

avec : H,.c: heure solaire vraie a la longitude nulle (Greenwich)

H..c: heure solaire moyenne a la longitude nulle

Eis: équation du temps a la longitude nulle.
Soit la figure ci-contre ou G1 désigne
l'intersection de 1'équateur avec le méridien
de Greenwich et P1 l'intersection de
I'équateur avec le méridien d'un lieu P a l'est
de Greenwich, donc de longitude Lg positive. &i
Lorsque P1 passera en S1, il sera midi
solaire vrai en P : H,, = 12h. A cette heure-la,
il n'est pas encore midi solaire vrai en G1,
nous avons donc : Hsv > HsvG. La différence
représente la durée nécessaire pour tourner
de l'angle Lg. Donc en exprimant la dif-

férence en minutes et la longitude en degrés :
H,, - Hyc =4.Lg.

S1etP1
confondus

Ainsi :

Hsv = HsmG +4.Lg - Et(;.
Lécart entre 1'heure solaire vrai du lieu quelconque et I'heure solaire moyenne a
Greenwich étant mesuré en minutes.
Prenons I'exemple de Paris (Observatoire) le 1 aott 2015 ; sa longitude est Lg = 2,34°
(valeur positive car Paris est a 1'est de Greenwich). Midi solaire vrai a Paris intervient
2,34 x 4 = 9,35minutes plus tot qu'a Greenwich. L'équation du temps vaut 6,36min ce
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jour-la. Lorsqu'il est 12h solaire moyen a Greenwich, soit 14h : heure légale d'été a
Paris, il est :

12h + 9,35min — 6,36min = 12h 3min solaire vrai a Paris.
Remarque 1 : Pendant longtemps, ['heure solaire moyenne a Greenwich & servie de référence :
U'heure GMT. En fait, les horloges atomiques récentes trés précises ont mis en évidence de trés faibles
irrégularités et un trés lent ralentissement de la rotation de la terre sur elle-méme, d’oit la mise en
place d’'un temps universel coordonnée (temps UTC) défini a partir d'un ensemble d’horloges
atomiques. Cependant, au besoin par l'ajout ou la suppression de secondes intercalaires au
calendrier, les astronomes veillent a ce que l'’heure UTC ne s’écarte jamais de ['heure GMT de plus
d’une seconde. On peut poser en trés bonne approximation : Hg,qc= Hyrc.
Remarque 2 : Si on dispose d’'une bonne montre indiquant ’heure UTC, de l'équation du temps a la
date donnée, le repérage de l'heure de culmination du soleil ce jour-la permet le calcul de la
longitude du lieu. Prenons un exemple : imaginons que le 1 aotit 2015, la montre indique 13h30min
lorsque le soleil culmine : Hsv = 13h30min. La culmination du soleil a Greenwich ce jour-la
correspond a l’heure solaire vrai a Greenwich :
HsvG = HsmG - Et = 12h — 6,36min = 11h 53,64min.
Midi solaire a été observé a Greenwich 1h 36,36min = 96,36min plus tét qu’'au lieu considéré. Ce
lieu est donc @ l'ouest de Greenwich, sa longitude est négative. On obtient :

Lg = ——964’136 = —24,09°

Cette méthode de mesure de longitude a longtemps été utilisée en marine.
Remarque 3 : l'heure légale est fixée par décret dans chaque pays. C'est en général I'heure UTC a la-
quelle on agjoute ou retranche un nombre entier d’heures de facon que midi heure légale ne soit pas
trop éloigné de midi solaire. Ainsi en France l’heure légale est (UTC +1) l'hiver et (UTC +2) l'été.
Remarque 4 : On peut se poser la question : pourquoi est-il nécessaire de mesurer le temps avec une
telle précision ? Les GPS mesurent maintenant les distances en mesurant des temps de parcours de
la lumiére d'un lieu & un autre. Imaginons une horloge mesurant cette durée avec une erreur d’'un
millioniéme de seconde. Cela peut paraitre une excellente mesure dans l'absolu mais, sachant que la
lumieére se propage a 300 000 km par seconde environ, cette erreur génére une erreur sur la distance
de 300m !

Retour a la page d'accueil
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