
Annexe n° 3 : variations saisonnières de la durée du jour solaire ; 
équation du temps.
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I : Les deux causes de la variation de durée du jour solaire.
Nous avons vu Partie II §2 que la durée du jour solaire fluctue autour de sa valeur 

moyenne (24h) en fonction de la saison. Il s'agit ici d'analyser les deux causes de cette variation.
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I.1. Les variations saisonnières de la vitesse du soleil.
Je  reproduis  ci-contre  la 

trajectoire du centre du soleil dans 
le référentiel géocentrique : il s'agit 
d'une  ellipse  dont  le  centre  de  la 
terre  est  un  foyer  (noté  F) ;  la 
période (durée d'un tour), notée T 
est  égale  à  une  année  sidérale. 
Pour  la  clarté  de  la  figure, 
l'excentricité  est  fortement 
augmentée par rapport à la réalité. 
On  note  S1,  S2,…,  S20  vingt 
positions successives du centre du 
soleil  occupées  aux 
dates respectives :  t1,  t2  = 
t1+T/20 ,  t3 = t2+T/20, t4 = t3 + 
T/20… La date  t1 correspond à un 
passage  au  périhélie.  La  durée 
entre  deux  positions  successives 
est  toujours  la  même :  un 
vingtième de période. En traçant les segments (O S1),  (O S2),...(0 S20),  on divise la 
surface  délimitée  par  l'ellipse  en  vingt  secteurs.  La loi  des  aires,  énoncée par 
Képler,  stipule que,  dans la mesure où les durées des parcours successifs 
(S1S2), (S2S3)...(S19S20) sont égales, les aires des différents secteurs sont égales. 
Ainsi, l'aire du secteur délimitée en rouge est égale à l'aire du secteur délimitée en 
vert.
Conséquence de cette loi : Les distances (FS1) et (FS20) étant nettement inférieures aux 
distances (FS9) et (FS10) l'égalité des aires des deux secteurs « vert » et « rouge » n'est 
possible que parce que la distance parcourue par le centre du soleil de S9 à S10 est infé-
rieure à celle parcourue de S20 à S1. Les durées de ces deux parcours étant égales, la vi-
tesse entre S9 et S10 est nécessairement inférieure à celle entre S20 et S1.

Ainsi, la vitesse du centre du soleil varie : elle est maximale au passage 
au périhélie  (le 4 janvier : 1,019 degré par jour) et minimale au passage à 
l'aphélie (le 4 juillet : 0,953 degré par jour) pour une valeur moyenne de 0,986 
degré par jour.

I.2. Influence de l'excentricité de la trajectoire du soleil sur la durée du jour 
solaire.
On peut reprendre le raisonnement fait (Partie II.3, remarque 2) en l'adaptant à 

la différence entre le jour solaire (durée Js) et le jour sidéral (durée Jst). En très bonne 
approximation, on peut considérer la différence (Js – Jst) comme la durée nécessaire 
au projeté M1 du méridien de référence sur la sphère céleste à tourner de l'angle , cet 
angle étant celui dont tourne le soleil en un jour sidéral.
Soit S La vitesse angulaire du soleil le jour considéré (les variations de S étant très 
lentes, on peut considérer cette grandeur comme pratiquement constante sur un jour) :

α = ΩS⋅Jst avec S  en tour par heure et Jst en heures.
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Soit M1 la vitesse de M1 en tour par heure. On obtient :

Js−Jst = α
ΩM 1

=
Jst⋅ΩS

ΩM 1
soit : Js = Jst⋅(1+ ΩS

ΩM 1 ) .

L'écart par rapport au jour solaire moyen (Jm = 24h) vaut finalement :

Js−Jm = Jst⋅(1+ ΩS

ΩM1 )−Jm .

Les  éphémérides  per-
mettent le calcul de S . 
Les autres grandeurs de 
la  formule  ont  déjà  été 
évoquées.  La  courbe  ci-
dessous  représente  les 
variations  au  cours  de 
l'année  2015  de  l'écart 
(Js-Jm)  exprimé  en  se-
condes. L'écart est maxi-
mum lorsque le  soleil  a 
sa  vitesse  maximale, 
c'est à dire le 4 janvier ; 
cet  écart  est  minimum 
lorsque  le  soleil  a  sa  vitesse  minimale,  c'est  à  dire  le  4  juillet.  Cet  écart  varie 
périodiquement :  on  retrouve  le  même  écart  lorsque  le  soleil  retrouve  une  même 
position sur sa trajectoire. La période est donc égale à une année sidérale.

I.3. Influence de l'obliquité sur la durée du jour solaire.
La courbe  précédente  montre  que  l'écart  (Js-Jm)  dû à  la  seule  variation de 

vitesse du soleil ne dépasse pas huit secondes. Or les mesures montrent que cet écart 
peut atteindre 30s. Il existe donc une autre cause aux variations de durée du jour 
solaire !
Remarque : le raisonnement que nous allons faire présente quelques similitudes avec celui sur l'in-
fluence de la précession des équinoxes sur le jour sidéral (Partie IV §3).
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La figure de gauche correspond au centre du soleil (en jaune) passant par le 
point  vernal :  nous  sommes  à  l'équinoxe  de  printemps.  Dans  son  mouvement  sur 
l'écliptique, la vitesse du soleil (représentée par la flèche rouge) a deux composantes : 
une composante d'ouest en est (représentée par la flèche bleue) et une composante 
orientée vers le nord (représentée par la flèche verte). L'existence de la composante 
vers le nord a une conséquence familière : à cette période de l'année, le soleil est de 
plus en plus haut sur l'horizon à heure fixe. Pour la détermination de l'heure et donc 
pour la durée du jour solaire, seule compte la composante d'est en ouest et celle-ci est 
au début printemps égale à seulement 91,75 % à la vitesse réelle du soleil.

La  figure  de  droite  correspond  au  solstice  d'été  (la  partie  « arrière »  de 
l'écliptique n'est pas représentée). Dans ce cas particulier, la vitesse du soleil n'a pas 
de composante vers le nord ou le sud : la composante est-ouest de la vitesse du soleil 
représente 100 % de la vitesse réelle.

Entre le  solstice d'été et  le  solstice d'hiver,  le  raisonnement est  analogue,  la 
flèche verte étant orientée vers le sud :  à cette période de l'année, le soleil est de plus 
en plus bas sur l'horizon à heure fixe.

Conséquence, dans le calcul de l'écart (Js – Jm), il faut multiplier la vitesse du 
soleil par un terme correctif  R :

Js−Jm = Jst⋅(1+ R⋅ΩS

ΩM 1
)−Jm .

R varie en fonction de la saison selon le tableau de variations ci-dessous :

Dates Solstice
d'hiver

année A

Équinoxe de 
printemps

Solstice
d'été

Équinoxe
d'automne

Solstice 
d'hiver
année 
A+1

variations 1 1 1
de ➘ ↗ ➘ ↗

R 0,9275 0,9275
Ainsi  R varie  périodiquement avec une période d'une demie année tropique. 

Puisque (Js – Jm) augmente avec R, la contribution de l'obliquité à l'écart (Js – Jm) 
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varie suivant un tableau de variation analogue. Cette contribution correspond à la 
courbe verte.

L'écart  total  correspond  à  la  courbe  bleue.  Cet  écart  est  maximum  vers  le  22 
décembre : cette date correspond à un maximum de R et à une valeur élevée de S car 
le soleil est proche du périhélie (atteint le 4 janvier).
Remarque : l'écart total (Jm-Js) ne varie pas de façon rigoureusement périodique dans la mesure où  
il fait intervenir des phénomènes de périodes différentes  : année sidérale d'une part, demie année  
tropique d'autre part. De plus ces périodes ne sont pas égales à la durée moyenne de l'année civile.  
Ainsi,  les  maximums et  minimums ne  seront  pas  obtenus  les  mêmes jours  du calendrier  selon  
l'année étudiée. Cependant, année tropique, année sidérale et année civile moyenne ont des durées  
très proches  : les modifications des courbes ci-dessus, d'une année à l'autre sont très faibles…

II : Équation du temps.
Nous  savons  que  l'heure  solaire  dépend  de  la  longitude.  Nous  allons  donc  

d'abord  faire  notre  étude  en  plaçant  l’observateur  terrestre  le  long  du méridien  de  
Greenwich.  Nous  verrons  ensuite  les  corrections  à  apporter  pour  des  longitudes  
différentes.

II.1. Définition de l'équation du temps.
Remarque préliminaire  : le mot « équation » n'a pas ici son acception usuelle mais plutôt celle plus  
ancienne de « terme correctif » à apporter à une grandeur.

Avant la généralisation des montres, alors que les cadrans solaires étaient nom-
breux, l'équation du temps (notée Et) a été définie comme la durée qu'il faut ajouter à 
l'heure lue sur un cadran solaire (heure solaire vraie : Hsv) pour avoir l'heure solaire 
moyenne Hsm (en Angleterre : heure solaire moyenne = heure légale ou heure légale 
moins une heure l'été) :

Hsm = Hsv + Et  soit Et = Hsm – Hsv.
D'ailleurs, la courbe annuelle d'équation du temps était souvent exposée (souvent sous 
forme d'analemme) à côté du cadran. 
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Remarque : bien que la majorité du territoire français métropolitain appartienne au fuseau horaire  
centré sur Greenwich, nous avons : heure légale = heure solaire moyenne de Greenwich plus une  
heure l'hiver et plus deux heures l'été  : nous sommes restés à l'heure solaire allemande l'hiver...
L’équation du temps est une grandeur algébrique. Supposons Et > 0 : à Hsm = 12h, 
le cadran solaire indique une heure Hsv inférieure ; il n'est pas encore midi solaire 
vrai ;  le soleil  réel est en retard sur le soleil  fictif moyen. Inversement,  une 
valeur négative de Et correspond à un soleil en avance sur le soleil moyen.
Cette définition est toujours celle adoptée en France (les anglo-saxons adoptent  la 
convention de signe opposé).

Dans  ces 
conditions,  l'équation  du 
temps apparaît comme le 
cumul des écarts (Js-Jm) 
au fil du temps. Bien sûr, 
cet écart cumulé ne croît 
pas infiniment puisque la 
valeur moyenne de (Js – 
Jm)  est  nulle,  par 
définition  même  de  la 
valeur moyenne. 

L'équation  du 
temps  ainsi  que  les 
coordonnées des planètes 
du  système  solaires 
peuvent  être  obtenus  à 
l'adresse  suivante : 

http://pgj.astro.free.fr/position-planetes.htm .  De  nombreux  logiciels  téléchargeables 
gratuitement permettent le calcul de Et et trace la courbe représentant les variations 
de Et au cours d'une année.  Voici  par exemple ci-dessus le résultat obtenu avec le 
logiciel SHADOWS pour l'année 2015.

II.2 Influence de l'excentricité sur l'équation du temps.
Pour cette étude, nous étudions la  seule influence de l'excentricité  : nous supposons donc 

l'obliquité nulle  :  les plans de l'équateur et de l'écliptique sont considérés comme confondus. Le  
repère a pour origine O le centre de l'ellipse décrite par le centre du soleil, l'axe (OX) est orienté du 
centre de l'ellipse vers l'aphélie. Dans un premier temps, nous allons construire cette ellipse.  

II.2.1 Anomalie moyenne, anomalie excentrique, anomalie vraie, équation de 
Képler.

Attention :  dorénavant,  en  absence  de  précisions,  les  mesures  d'angles  seront 
exprimées en radians plutôt qu'en degrés.
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La méthode a déjà été expliquée en fin d'annexe 1 ; on trace (en pointillés rouges) un 
cercle de rayon a, de centre O (centre de l'ellipse) et à tout point Mc de ce cercle, carac-
térisé par l'angle polaire E, on fait correspondre un point S de l'ellipse de même abs-
cisse mais d'ordonnée multipliée par b/a. L'angle polaire E est appelé anomalie ex-
centrique. Le foyer F de l'ellipse correspond au centre de la terre, il est à la distance c 
= e.a du centre O (pour améliorer la clarté de la figure on choisit une valeur de e beau-
coup plus grande que la valeur réelle). 
On trace également (en pointillés bleus) la trajectoire du centre Sf du soleil fictif défini 
page 13 du document principal. Sf tourne à vitesse angulaire constante sur un cercle 
de centre F et de rayon a. Il effectue un tour en une durée T égale à la durée d'un tour 
du soleil réel sur son orbite elliptique. L'angle polaire entre (FX) et (FSf) est noté M et 
appelé anomalie moyenne. Prenons l'origine des dates à un instant où Sf coupe l'axe 
(OX). Si Sf tourne de 2. radians (360°) pendant la durée T, pendant la durée t il 
tourne de :

M =
2⋅π
T
⋅t .

À ce stade, nous connaissons la trajectoire de S, nous savons positionner Sf à n'importe 
quel instant sur sa trajectoire circulaire, mais nous ne savons pas encore positionner S 
sur sa trajectoire elliptique à la date t. Pour ce faire, il faut connaître la valeur de 
l'angle polaire E à la date quelconque t. Nous allons appliquer la loi des aires : l'aire 
balayée par FS entre la date zéro et la date t doit être proportionnelle à t et la durée T 
doit correspondre à une aire balayée égale à celle délimitée par l'ellipse : .a.b . L'aire 
A balayée par (FS), entre les dates zéro et t (coloriée en  bleu sur le schéma) doit donc 
vérifier la relation :
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A = π⋅a⋅b
T

⋅t .

Exprimons cette aire en fonction de l'anomalie excentrique E. Exprimons d'abord l'aire 
S1 du secteur circulaire de rayon a correspondant à l'arc P̂Mc . Lorsque le rayon OMC 

tourne d'un tour, soit 2. radians, il balaie l'aire totale du disque soit  .a2 ; lorsqu'il 
tourne de l'angle E (mesuré en radians), il balaie l'aire :

S1 = π⋅a2⋅E
2⋅π

= a2⋅E
2

.

Exprimons maintenant l'aire S2 du triangle (OFMC). Cette aire est égale au demi 
produit de la hauteur Ymc du triangle par sa base : OF = c = a.e ;

S2 =
a⋅sin (E)⋅a⋅e

2
= 1
2
⋅a2⋅e⋅sin (E) .

L'aire S3 de la surface délimitée par l'arc P̂Mc  et les segments (FP) et (FMC) est :
S3 = S1−S2 = 1

2
⋅a2⋅(E−e⋅sin(E)) .

Appliquons à tout point du contour dont on vient de calculer l'aire S3 la transformation 
déjà utilisée : à tout point de ce contour, on fait correspondre un point de même 
abscisse mais d'ordonnée multipliée par le rapport b/a ; L'arc de cercle P̂Mc  se 
transforme en la portion d'ellipse P̂S  ; le segment (FMC) se transforme en segment 
(FS) et le segment (FP) se conserve (multiplier l'ordonnée nulle de tout point de (FP) 
par b/a donne zéro). Le raisonnement déjà utilisé en fin d'annexe 1 pour déduire l'aire 
délimitée par l'ellipse de l'aire du disque permet d'affirmer :

A = b
a
⋅S3 = 1

2
⋅a⋅b⋅(E−e⋅sin (E)) .

Or :
M =

2⋅π
T
⋅t et A =

π⋅a⋅b
T

⋅t . Par substitution : A = 1
2
⋅a⋅b⋅M .

Par identification, on obtient l'équation démontrée pour la première fois par 
Képler :

E−e⋅sin(E) = M  .

M étant connu à la date t, la résolution de l'équation de Képler donne la valeur de E à 
la date t, ce qui permet d'obtenir les coordonnées polaires de S par les formules 
démontrées en annexe n°1 :

distance FS = r = a⋅(1−e⋅cos(E))  ;

tan (ν) =
sin (E)
cos(E)−e

 avec sin( ) de même signe que sin(E).

L'angle polaire  est appelé anomalie vraie du soleil.
Remarque : l'usage du mot « anomalie » pour désigner des angles peut surprendre : il dérive de 
l'adjectif « anomal » qui signifie : « présente des irrégularités ».

II.2.2 Influence de l'excentricité sur l'équation du temps : équation du centre.
Le cercle de la figure représente l'écliptique de centre F : centre de la terre. Sf et 

S désignent respectivement les intersections avec la sphère céleste des droites passant 
par F et les centres du soleil fictif et du soleil véritable. M1 représente le projeté sur la 
sphère  céleste  de  l'intersection  du  méridien  de  Greenwich  avec  l'équateur.  Nous 
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continuons à confondre écliptique et équateur céleste. Lorsque M1 rattrape S, il  est 
midi solaire vrai : Hsv = 12h. Il n'est pas encore midi solaire moyen : Hsm < Hsv. La 
différence (Hsv – Hsm) représente l'équation du temps due à la seule influence de 
l'excentricité : on l'appelle traditionnellement équation du centre : Etc.

Etc = Hsm – Hsv en supposant l'obliquité nulle.
On rappelle que M1 tourne environ 365 fois plus vite que S et Sf. Dans ces conditions, 
Etc représente le temps que met M1 pour se déplacer de S à Sf, soit tourner de l'angle 
(M - ). Nous avons déjà montré que M1 tourne  par rapport au soleil de 1° toutes les 
quatre minutes. Cela conduit à :

Etc = 4.( - M ) avec Etc en minutes et (  - M) en degrés.

II.2.3 Exemple de détermination de l'équation du centre.
Pour illustrer ces propos, nous allons déterminer l'équation du centre sur le méridien de  

Greenwich à une date choisie au hasard : le 1 août 2015 à 12h (heure solaire moyenne).  
Le  livre  de  Jean  MEEUS  évoqué  en  introduction  fournit  la  valeur  de  l'anomalie 
moyenne à cette date : M = 206,576° = 3,6054rad.
L'excentricité de l'ellipse vaut : e = 0,0167. Il faut maintenant trouver la valeur de 
l'anomalie  excentrique vérifiant l'équation de Képler.  Cela n'a  rien d'évident car il 
n'existe pas de solution explicite à une telle équation. Le plus simple est d'utiliser un 
logiciel  scientifique  ou  à  défaut  une  calculatrice  programmable.  Par  exemple :  la 
commande « fsolve » du logiciel MAPLE ou du logiciel MATLAB donne immédiatement 
le résultat :

E = 3,598rad.
On en déduit : tan() = 0,4820 avec sin() < 0. D'où :  = 205,736°.
Ainsi l'équation au centre à cette date vaut :

Etc = 4.(205,736 – 206,576) = - 3,362min.
Si la loi des aires était la seule cause des variations de durée du jour solaire, le soleil 
serait le 1 août 2015 en avance d'un peu plus de 3min sur le soleil moyen.

Cette  séquence  de  calculs 
peut être refaite pour tous les jours 
de l'année, ce qui permet de tracer 
la courbe ci-contre où les abscisses 
sont les numéros des jours de l'an-
née  2015  et  les  ordonnées  les  va-
leurs de Etc mesurées en minutes. 
On  constate  que  l’ellipticité  de  la 
trajectoire  provoque  un  décalage 
entre l'heure solaire vraie et l'heure 
solaire  moyenne  pouvant  atteindre 
près de 8min.

II.3 Influence de l'obliquité sur  
l'équation du temps.
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II.3.1 Les  coordonnées géocentriques écliptiques du soleil. 
On peut repérer le centre S 

du soleil  et le centre Sf du soleil 
fictif  par  leurs  coordonnées 
écliptiques. La position d'un astre 
quelconque  M  peut  être  repérée 
par la mesure de deux angles : la 
longitude écliptique L et la latitude 
écliptique  notée  .  (voir  figure  ci-
contre).  Les  latitudes  de  S  et  Sf 
sont  évidemment nulles  à  chaque 
instants. L'origine  des longitudes 
est  le  point  vernal  alors  que 
l'origine  des  anomalies  est  le 
périhélie. Nous avons donc :

Latitude  du  centre  S 
du soleil : L ≠  ;

Latitude du centre Sf 
du soleil fictif : Lf ≠ M.
Cependant l'écart  angulaire  entre 
les  droites  (FS)  et  Fsf)  est 
indépendant de l'origine choisie pour les angles. On peut donc poser à chaque instant :

L – Lf =  - M ; ou : L = Lf +  -M
La valeur de Lf est donnée par les tables astronomiques ; selon Jean MEEUS, le 1 août 
à 12h solaire moyen : Lf = 129,785°.
L'étude de l'équation au centre a conduit à :  = 205,736° ; M = 206,576°.
d'où :

L = 129,785 + 205,736 - 206,576 =128,944°.
Dans  la  base  directe  orthonormée  (X⃗ , Y⃗ , Z⃗)  (représentée  en  bleu),  dans  le  cas 
particulier où le point M est sur l'écliptique, donc confondu avec m, on peut écrire  en 
choisissant le rayon de la sphère céleste arbitrairement égal à 1 :

O⃗M = cos(L)⋅X⃗+sin (L)⋅Y⃗ .

II.3.2 Les  coordonnées 
géocentriques équatoriales 
du soleil.

Nous l'avons déjà expliqué : 
l'heure  solaire  dépend  de  la 
position du projeté du centre S du 
soleil sur l'équateur, c'est à dire de 
l'ascension  droite   du  soleil  que 
nous  avons  déjà  définie  page  6, 
schéma  n°  6  du  document 
principal.  Il  s'agit  donc  de  déter-
miner  l'ascension  droite   
connaissant la longitude écliptique 
L.

Page 10 sur 14



Choisissons la base orthonormée directe représentée ci-contre en vert (u⃗ , v⃗ ,w⃗)  où u⃗  
dirige  (O  )  et  w⃗  est  orienté  vers  le  pôle  nord.  Les  coordonnées  d'un  point  M 
quelconque de la sphère céleste sont les coordonnées sphériques de ce point ; on choisit 
la sphère céleste de rayon 1 :

O⃗M = cos(δ)⋅cos(α)⋅u⃗+cos(δ)⋅sin (α)⋅⃗v+sin(δ)⋅w⃗ .
On passe d'une base orthonormée à l'autre par une rotation autour de l'axe  (Ou⃗)  

d'angle  . On obtient ainsi : { X⃗=u⃗
Y⃗=cos(ε)⋅⃗v+sin(ε)⋅w⃗
Z⃗=−sin (ε)⋅v⃗+cos(ε)⋅w⃗

. D'où une nouvelle expression du 

vecteur position : 
O⃗M = cos(L)⋅⃗u+sin(L)⋅cos (ε)⋅⃗v+sin (L)⋅sin(ε)⋅w⃗ .

Par identification des deux expressions du vecteur position, on obtient trois égalités :
(1) cos (L) = cos(δ)⋅cos (α)
(2) sin(L)⋅cos (ε) = cos(δ)⋅sin(α)
(3) sin(L)⋅sin(ε) = sin (δ) .

La relation (3) permet de déterminer la déclinaison ; elle est sans intérêt pour notre 
étude de l'heure. Une « division membre à membre » de (2) par (1) conduit à :

tan (α) = cos (ε)⋅tan(L) . 
En  remarquant  que  le  cosinus  de  la  déclinaison  est  toujours  strictement  positif 
puisque la déclinaison est toujours inférieure à 90° et supérieure à (-90°), la relation 
(1) permet d'affirmer que cos() est toujours du signe de cos(L).
Conclusion : il est possible de déterminer l'ascension droite en fonction de la 
longitude  écliptique  en  calculant  la  tangente  de  cet  angle  puis  en 
s'intéressant au signe de son cosinus :

tan (α) = cos (ε)⋅tan (L)  avec cos() de même signe que cos(L).

Ainsi, le 1 août 2015 à 12h solaire, nous avons : 
tan() = cos(23,437°).tan(128,944°) = -1,1353 avec cos(L) < 0. 

D'où l'ascension droite du soleil :
 =131,375°.

II.3.3. Calcul de l'équation du temps.
Le  plan  de  la  figure  ci-contre  est  le 

plan équatorial,  le  centre  de  la  terre  étant 
noté O. Le projeté S1 du soleil est repéré par 
son  ascension  droite  .  Le  soleil  fictif  (ou 
soleil  moyen)  est  repéré  par  sa  longitude 
écliptique Lf. 
Remarque :  pourquoi repérer Sf par Lf alors 
que nous raisonnons dans le plan équatorial  
et non dans le plan écliptique ? Sf est défini 
dans le cas fictif où l'excentricité et l'obliquité  
sont  nulles ;  dans  ce  cas  fictif,  le  plan 
équatorial se confond avec le plan écliptique :  
ascension  droite  et  longitude  écliptique  se  
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confondent !
Raisonnons dans le cas de la figure où :

 > Lf.
Le méridien de Greenwich rencontrera Sf avant de rencontrer S1, le soleil réel est en 
retard par rapport au soleil fictif moyen : Et > 0. L'équation du temps représente la 
durée mise par le méridien de Greenwich à tourner de l'angle ( - Lf). D'où l'expression 
générale de l'équation du temps mesurée en minutes :

Et = 4.( - Lf) avec  et Lf mesurés en degrés.
Le 1 août 2015 cela donne :

Et = 4.(131,375 – 129,785) = 6,3613min.
Remarque 1 : Les tables des éphémérides donnent à cette date  : Et = 6,3567min ; l'écart – 
extrêmement faible (à peine 3 dixièmes de seconde)  - s'explique par le fait que nous avons négligé la 
nutation.
Remarque 2 : Nous avons déjà montré  : Etc = 4.( - M) = 4.(L – Lf). Afin de faire intervenir l'équation 
au centre dans l'expression de l'équation tu temps, on peut poser  :

Et = 4.( - Lf) = 4.(L – Lf) + 4.( - L).
4.( - L) représente la contribution à l'équation du temps de la projection du soleil vrai sur le plan  
de  l'équateur,  c'est  à  dire  l'influence  sur  l'équation  du  temps  de  l'obliquité.  Elle  est  appelée  
réduction à l'équateur EtR.  

EtR  = 4.( - L).

Ainsi : Et = Etc + EtR. Les trois courbes sont représentés ci-dessous pour l'année 2015, en bleu : Et,  
en rouge Etc, en vert EtR.Remarque 3 : les courbes représentant (page 66) les écarts journaliers (Js-
Jm) peuvent être considérées comme les trois courbes dérivées des courbes de l'équation du temps (la  
correspondance des couleurs est respectée). Si (Js – Jm) > 0, le cumul de ces écarts tend à augmenter,  
si (Js – Jm) < 0, le cumul des écarts tend à diminuer et enfin : (Js – Jm) = 0 ne crée pas de variation  
de Et  : nous avons ce jour-là un extremum de Et.
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Remarque 4 : conséquence de la remarque 3  : les remarques faites page 4 de cette annexe à propos de  
la périodicité des courbes s'appliquent respectivement aux trois courbes représentant Etc, EtR et Et.  
Les courbes annuelles varient très peu d'une année à l'autre. Pour illustrer ce propos, je reproduis ci-
dessous les  courbe annuelles  de l'équation du temps  décalées  de  trois siècles  :  en rouge pour  
l'année 1815, en bleu pour l'année 2115. Les écarts restent très faibles  : au plus une cinquantaine de 
secondes fin juillet.

II.4. Influence de la longitude sur l'heure solaire vraie.
 Les raisonnements précédents s'appliquent en un lieu sur le méridien de 
Greenwich (longitude Lg = 0). Pour la clarté des notations, les grandeurs mesurées sur 
le méridien de Greenwich seront affectées de l'indice G. Nous avons ainsi :

HsvG  = HsmG – EtG 
avec :  HsvG : heure solaire vraie à la longitude nulle (Greenwich)

HsmG : heure solaire moyenne à la longitude nulle
EtG : équation du temps à la longitude nulle.

Soit  la  figure  ci-contre  où  G1  désigne 
l'intersection de l'équateur avec le méridien 
de  Greenwich  et  P1  l'intersection  de 
l'équateur avec le méridien d'un lieu P à l'est 
de Greenwich, donc de longitude Lg positive. 
Lorsque  P1  passera  en  S1,  il  sera  midi 
solaire vrai en P : Hsv = 12h. À cette heure-là, 
il  n'est pas encore midi solaire vrai  en G1, 
nous avons donc : Hsv > HsvG. La différence 
représente la durée nécessaire pour tourner 
de  l'angle  Lg.  Donc  en  exprimant  la  dif-
férence en minutes et la longitude en degrés :

Hsv – HsvG = 4.Lg.
Ainsi :

Hsv = HsmG +4.Lg - EtG.
L'écart entre l'heure solaire vrai du lieu quelconque et l'heure solaire moyenne à 
Greenwich étant mesuré en minutes.
Prenons l'exemple de Paris (Observatoire) le 1 août 2015 ; sa longitude est Lg = 2,34° 
(valeur positive car Paris est à l'est de Greenwich). Midi solaire vrai à Paris intervient 
2,34 x 4 = 9,35minutes plus tôt qu'à Greenwich. L'équation du temps vaut 6,36min ce 

Page 13 sur 14



jour-là. Lorsqu'il est 12h solaire moyen à Greenwich, soit 14h : heure légale d'été à 
Paris,  il est :

12h + 9,35min – 6,36min = 12h 3min solaire vrai à Paris.
Remarque  1 :  Pendant  longtemps,  l'heure  solaire  moyenne  à  Greenwich  à  servie  de  référence  :  
l'heure GMT. En fait, les horloges atomiques récentes très précises ont mis en évidence de très faibles  
irrégularités et un très lent ralentissement de la rotation de la terre sur elle-même, d'où la mise en  
place  d'un  temps  universel  coordonnée  (temps  UTC)  défini  à  partir  d'un  ensemble  d'horloges  
atomiques.  Cependant,  au  besoin  par  l'ajout  ou  la  suppression  de  secondes  intercalaires  au  
calendrier, les astronomes veillent à ce que l'heure UTC ne s'écarte jamais de l'heure GMT de plus  
d'une seconde. On peut poser en très bonne approximation : HsmG = HUTC.
Remarque 2 : Si on dispose d'une bonne montre indiquant l'heure UTC, de l'équation du temps à la  
date  donnée,  le  repérage  de  l'heure  de  culmination  du  soleil  ce  jour-là  permet  le  calcul  de  la  
longitude du lieu. Prenons un exemple  : imaginons que le 1 août 2015, la montre indique 13h30min  
lorsque  le  soleil  culmine :  Hsv  =  13h30min.  La  culmination  du  soleil  à  Greenwich  ce  jour-là  
correspond à l'heure solaire vrai à Greenwich :
HsvG = HsmG – Et = 12h – 6,36min = 11h 53,64min. 
Midi solaire a été observé à Greenwich 1h 36,36min = 96,36min plus tôt qu'au lieu considéré. Ce  
lieu est donc à l'ouest de Greenwich, sa longitude est négative. On obtient  :

Lg = −96,36
4

= −24,09°   .

Cette méthode de mesure de longitude a longtemps été utilisée en marine.
Remarque 3 : l'heure légale est fixée par décret dans chaque pays. C'est en général l'heure UTC à la-
quelle on ajoute ou retranche un nombre entier d'heures de façon que midi heure légale ne soit pas  
trop éloigné de midi solaire. Ainsi en France l'heure légale est (UTC +1) l'hiver et (UTC +2) l'été.
Remarque 4 : On peut se poser la question : pourquoi est-il nécessaire de mesurer le temps avec une  
telle précision ? Les GPS mesurent maintenant les distances en mesurant des temps de parcours de  
la lumière d'un lieu à un autre. Imaginons une horloge mesurant cette durée avec une erreur d'un  
millionième de seconde. Cela peut paraître une excellente mesure dans l'absolu mais, sachant que la  
lumière se propage à 300 000 km par seconde environ, cette erreur génère une erreur sur la distance  
de 300m !

Retour à la page d'accueil
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