Circuit “RLC” parallele en régime transitoire

Résumé

La plupart des professeurs présentent I’étude du circuit “RLC” série en régime transitoire puis demandent aux étudiants,
en guise d’approfondissement, d’étudier personnellement le circuit “RLC” paralléle. Nombre d’entre eux éprouvent des
difficultés a “réinvestir” ainsi leurs connaissances. Cette fiche devrait les aider !

1 : Position du probléme

On suppose U'interrupteur (K) ouvert depuis suffisam-
ment longtemps pour que le condensateur soit déchargé
et qu’aucun courant ne circule. On ferme alors l'inter- ©
rupteur & l'instant de date t=0. Il s’agit d’abord d’étu- \ 30 20 1
ug(t)

dier qualitativement les valeurs de la tension u et des
quatre intensités & la date t = 0" puis de prévoir les va-
leurs asymptotiques de ces valeurs. Il faut ensuite établir

I’équation différentielle vérifiée par la tension u puis étu- ’E
dier les différents régimes possibles suivant la valeur de

la résistance réglable R. FIGURE 1 -

2 : Valeurs a t=0" :

2.1 : Rappels de cours :

Une bobine d’inductance L parcourue par un courant d’intensité iy accumule 1’énergie magnétique %Lz% De I’énergie ne
peut se créer ou disparaitre instantanément : en régime variable, ’énergie est nécessairement fonction continue du temps.
Cela impose la continuité de i. A retenir : une bobine impose la continuité de l’intensité dans sa branche de
circuit.

Si u désigne la tension aux bornes d’un condensateur, I’énergie électrique emmagasinée par celui-ci vaut : %C’u? La
continuité de I’énergie impose la continuité de la tension. A retenir : un condensateur impose la continuité de la
tension a ses bornes.

2.2 : Valeurs instantanées a la date t=071 :

Puisque, pour t<0: u =0 ; =15 =19 =13 = 0, les continuités rappelées précédemment conduisent & :
- continuité de la tension aux bornes du condensateur : u+) = 0;
- continuité de l'intensité dans la branche de la bobine : i3g+) = 0;
- loi d’0Ohm appliquée & R : iy(g+) = u(;);) =0;
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- loi des nceuds : i3(0+) = i(0+) — i1(0+) — i2(0+) = RLQ

- loi I’Ohm appliquée a Rg : i(o+) =

2.3 : Valeurs des dérivées par rapport au temps a la date t=07 :

Nous allons montrer par la suite que les valeurs instantanées précédentes sont solutions d’équations différentielles du
second ordre. Les solutions de ces équations font intervenir deux constantes qu’il est possible de déterminer en connaissant
deux conditions particuliéres : les valeurs initiales et les valeurs des dérivées par rapport au temps a l'instant initial que nous
allons déterminer dans ce paragraphe.

_ diz . . (diz _0N-

tension aux bornes de la bobine : u = L%2 ; donc : (42),, = 0;

- intensité du courant & travers la branche du condensateur : i3 = C’% ; donc ("l—";)O+ = Rf.c ;

- loi d’Ohm appliquée a R : d“ Rdd’t1 ; donc : (dd’tl )0+ = #w ;

- loi d’Ohm appliquée & Rg : i = ERg ; donc : (j—)o R% (d—qt‘)0+ = R’;fE.C

- en dérivant par rapport & t la loi des nceuds : (%42) , = (%) . — (%4),: — (%2),: = _RfC (R%, + %) = —%ERCQ)




2.4 : Valeurs asymptotiques :

Il s’agit des valeurs limites lorsque t tend vers l'infini c’est & dire des valeurs en régime permanent. Ces valeurs vont
s’obtenir en étudiant les asymptotes aux courbes représentatives des diverses valeurs instantanées. Il est cependant possible
de les obtenir simplement sans calculs compliqués. La comparaison permettra de juger de la pertinence des résultats obtenus.
Puisqu’il s’agit d’étudier le régime permanent, il suffit de considérer toutes les dérivées par rapport au temps
nulles.

- tension aux bornes de la bobine : u = Lﬁf}f ; donc : lim;_,oo u = 0; ainsi, en régime permanent, la bobine est
équivalente a4 un interrupteur fermeé : elle peut étre parcourue par un courant mais la tension & ses bornes est nulle.

- intensité du courant & travers la branche du condensateur : i3 = C"ét ; donc : limy_, o, i3 = 0; ainsi, en régime
permanent, le condensateur se comporte comme un interrupteur ouvert : la tension a ses bornes peut ne pas étre
nulle mais aucun courant ne traverse sa branche.

- loi d’0Ohm appliquée 4 R : i1 = £ =0;

- loi ’Ohm appliquée & Rg : i = =% =

-IOideanEudS:7:2:7;77;1*7:3:R£;
g

u E

E— .
Rgy Ry

2.5 : Récapitulatif des résultats :

| | v i iz _| is | i ]
’ Valeurs a t=07 H 0 H 0 H 0 H _ % _ H }J;Jg ‘
T - B 1 O e
’ Valeurs pour t — oo H 0 H 0 H R% ‘ 0 H R% ‘

3 : Equation différentielle vérifiée par u :

Une méthode simple possible consiste & écrire la loi des noeuds , & dériver tous les termes par rapport au temps puis a
exprimer chaque dérivée en fonction de u ou des dérivées de u par rapport au temps.
di diy | dip | dig
dt  dt  dt = dt

i Y _ E—u di _ 1 du
"= R, R, 7(?0“ 1d§ R, dt
_u. dip _ 1du
= R donc di = R di ’
u= L% ; donc: G2 = 7
du . odiz d?u
iz =C% ;donc : 2 = O

D’ou I’équation différentielle :

1 2
p Ldu, pdu

1 du _u
R dt L Rdt dt?

. R.R " o . o .
: 4 = & + 7 soit : R, = - : résistance équivalente a l’association en paralléle
e g

Pour alléger les notations, on pose joE
9
de R et de Rg. En ordonnant 1’équation différentielle précédente :

du 71 dfu—ki u=20
2 RO dt = LC

Remarque : Une fois Uinterrupteur fermé, il est possible de remplacer le générateur linéaire de tension (f.é.m. E,
résistance interne Rg) par le générateur linéaire de courant équivalent : courant électromoteur 15 ,résistance interne Rg. Il
est alors possible de remplacer les deux résistances en paralléle par leur résistance équivalente Re de]a définie plus haut.

i3(t) i2(t) iL(t) B 20 "

E/Rg 4 E/Rg 4

@ Rg © t R ult) c L Re u(t)

La loi des neuds conduit a :

L o vvirtia soit: o—d—i/+@+%
R, 7 U dt T dt  dt
1 du n U L C d*u 0 soit d*u n 1 du n 1 0
Pp— — - —_— = N —_— —_— _——u =
R, dt L dt? dt?  R..C dt LC



On retrouve heureusement la méme équation différentielle que par l’autre méthode !
Le cas particulier d’'un amortissement nul correspond & ﬁ = (. L’équation différentielle devient alors trés simple :

d*u 1

E + E u=20
Elle admet une solution sinusoidale de pulsation wy appelée pulsation propre du circuit. En posant :
u = Up,. cos (wg-t + ¢), la dérivée seconde par rapport au temps a pour expression : % = —w.u.

L’identification permet de définir la pulsation propre :

1
Wy = ———

VvVL.C

Le produit R,C ayant la dimension physique d’un temps, son inverse & la dimension physique d’une pulsation, d’ou

I’habitude de poser ﬁ proportionnel & la pulsation propre. Une tendance récente consiste & écrire :

1 - wo
R.C  Q
ou Q est un nombre sans dimension appelé « facteur de qualité » du circuit. Cette notation présente deux inconvénients :

1° : lexistence de Q au dénominateur complique fortement les calculs :
2° : comme cela va apparaitre trés bientdt dans le calcul du discriminant : faire apparaitre un « 2 » dans la constante

allege notablement les calculs.

Nous poserons donc :

ce qui revient & poser :

1 /C
Q = % = Re.C.WO = Re~ Z

: Les trois cas de régime transitoire :

4.1 : Généralités :

L’équation différentielle vérifiée par u s’écrit donc de maniére générale :

d?u du
On cherche des solutions de la forme : v = K.e™t.
du d*u 9
—=ru ; — =7
dt T dt?

r est ainsi solution de I’équation caractéristique :
r? 4+ 2.0 T +wi =0
Son discriminant vaut :
A =4.0"w] —dw) = 4w (0 — 1)

Remarque : on voit bien ici l'intérét du « 2 » introduit dans la constante.

4.2 : Régime pseudo-périodique :

4.2.1 : Etude théorique :

Il correspond 4 :

1
A <0 soit a<l soit Q>§

Les racines de ’équation caractéristique sont deux complexes conjuguées :

ry = —a.wy+ jwe.V1—a? ; 19 =—a.wy— jwy.\V1—a2

Pour alléger les notations, on peut définir la pseudo pulsation w par la relation :

1
w:wo.\/l—a2:w0.1/1—TQ2



Les solutions sont alors de la forme :

U= Upy.e” " cos(w.t + ) = e > (K. cos (w.t) + Ko.sin (w.t)) ‘

Remarque 1 : ce régime peut étre décrit comme un régime d’oscillations de pseudo pulsation w dont l'amplitude décroit
exponentiellement au cours du temps.

Remarque 2 : la solution fait intervenir deux constantes (K; et Kp ou Uy, et @), d’ou la nécessité de connaitre deux
conditions particuliéres : en général la valeur initiale et la valeur initiale de la dérivée par rapport au temps.

u() = 0 = K;. L’expression de la dérivée par rapport au temps s’écrit alors :

u = et K sin (w.t) d’oit Pexpression de la dérivée : 4 = —a.wp.u + w.e~*“0! Ky cos (w.t)
(441 = ﬁE.C = w.Ky; d’otl Iexpression de u pour le montage étudié ici :
E a.wo.t .
U=———-€ ¥ .sin(w.t
Ry.Cw (@)
Remarque 3 : pour estimer la durée de ce régime transitoire, on part de la constatation suivante : e=® ~ 6,7.1073 (1 — 6_5) ~
99,3.102. On peut donc considérer qu’au bout d’une durée t| = D%O = % le régime permanent est atteint avec une erreur

relative commise inférieure a 0,7%.
Remarque 4 : ayant obtenu l’expression de u en fonction de t, il est facile d’obtenir les expressions des différentes intensités
a partir des relations :

E—-u
R, ’

h=—= ; i3=C.— ; i= lg =1y =1—1] — 13
R at '

4.2.2 : Etude d’un cas particulier :

Nous choisissons : L=100mH et C=10pF de facon & obtenir une pulsation propre : wy = \/27 = 103rad/s. De fagon a
1

2Q
Remarque : pour certains générateurs : Ry, = 60082 ; il faut donc ajuster R de sorte que : - = 5 + & soit R = }};"ﬁ{ =
e g 9

3kQ. Pour E=6V, une simulation informatique du fonctionnement du circuit conduit pour u & la courbe suivante :

=0, 1, nous choisissons : R, = c& = 50012.

obtenir Q=5 soit o = =
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Il est possible de vérifier 'accord entre cette courbe et ’étude théorique précédente. Je présente ci-dessous les courbes
correspondant aux différentes intensités. Je laisse le lecteur vérifier que les valeurs initiales, les coefficients directeurs des
tangentes en t=0 ainsi que les valeurs asymptotiques sont conformes a ’étude théorique résumée dans le tableau §2.5 ...



intensités des courants
Printing Time:dimanche 21 janvier 2018, 18:46:23
18m |

16m

14m+

12m+

1om 4 /\f
8m -

sm/ 6m

2

‘@

c

L 4m

£
2m+

°j VA —

_4m

-6m -

-8m

Time (s)
[ziS @i @H [ziZ

4.2.3 : Exemple de détermination de Q.

11 est fréquent en travaux pratique de devoir mesurer Q & partir d’un enregistrement de la courbe u=f(t) obtenue a I’aide
d’un oscilloscope numérique ou d’une carte d’acquisition. On peut commencer par remarquer que les maximums successifs
de u sont obtenus & dates successives séparées de T la pseudo période. Cela se démontre aisément & partir de I’expression de
la dérivée de u par rapport a t :

du  FE
dt  R,;.Cw

Les extremums de u sont obtenus pour une valeur nulle de la dérivée, soit pour :
w V1—a?

tan (w.t) = =
( ) .Wo a

—a.wo.t | [

e w. cos (w.t) — a.wp. sin (w.t)]

Ce qui prouve que ’on obtient un maximum toutes les T secondes et un minimum toutes les T secondes avec comme
expression de | pseudo période :

2 2T _ To _ 27nvL.C
B — 2 — 2 1
w o w1l —a V-« \/1 — &

T =

Pour vérifier expérimentalement la décroissance exponentielle de ’amplitude, on reléve les maximums successifs de u et
les dates correspondantes.

On constate que la durée entre deux maximums successifs est trés proche de 6,30ms. On peut donc poser T' =~ 6, 30ms
Comme prévu par la théorie précédente, cette valeur est bien un peu supérieure a la période propre : Ty = fj—” ~ 6,28ms.
Cependant, ’écart relatif est trop faible entre T et Ty pour permettre une détermination précise de a et de Q. On préfére
utiliser la méthode du décrément logarithmique. Par définition, le décrément logarithmique vaut, :

Soit ici :
I exp (—a-wp - t) - sin (w - t)
0=1 (exp(—a-wo-(t+T))-sin(w-(t+T))

puisque : sin(w - (t+ 7)) =sin (w -t + 27) =sin(w - t) Vt .
Soit encore :

) = In (exp (a.wp - T')) = awo - T



5 a.wg - Ty 9 «
= — — me —
V1—a? V1—a?

ou :
1 2T
- = 5
2Q.\/1— & VA1

On g’intéresse aux six premiers maximums successifs :

0=2

n o [ v | 2 [ 3 | 4 [ 5 |
(ms) 1,502 | 7,804 | 14,107 | 20,409 | 26,711 | 33,002
u(t) (mV) | 862,33 | 458,70 | 243,96 | 129,73 | 69,99 | 36,69
In(u(t)) 6,760 | 6,128 | 5,497 | 4,865 | 4,234 | 3,602
to- tn1 (S) 6,302 | 6,303 | 6,302 | 6,302 | 6,291

Si on note Uo la valeur du premier maximum de u, pour lequel n=0, la valeur du deuxiéme maximum (n=1) est
Uo.exp (—0); la valeur du troisiétme maximum (n=2) est Uo.exp (—20); plus généralement, la valeur du maximum de
numeéro n est Uo. exp (—n.0), de sorte qu’il est possible de poser, pour les maximums successifs :

In (u(y)) = —n.0 +In (Uy)

Pour vérifier expérimentalement le caractére expo-
nentiel de I'amortissement et mesurer le décrément lo-

garithmique, il suffit de représenter en fonction de n le 7
logarithme des maximums successifs. Puisque les valeurs 6.5
proviennent d’une simulation informatique, I’accord avec 6
la théorie est évidemment excellent comme en témoigne 5':
la valeur du carré du coefficient de régression extréme- — a5
ment proche de 1. On en déduit la valeur du décrément E ,
. . e , . )
logamthmlqu‘e,. 6 = 0,631. Cela permet d’obtenir le fac 35 (%) = - 0,6314434961X + 6, 7597687202
teur de qualité : 3 R2'=0,9999999942
2.5
2 2
T 1
— - o~ 0 1 2 3 4 5
Q= 52 + 1~ 5,004
FIGURE 2 — "
La encore bien sir : I’accord avec la théorie est ex-

cellent !

4.3 : Etude du régime critique :
4.3.1 : Etude théorique :

Il s’agit du cas limite correspondant a :

1
A=0 soit a=1 ou in
L’équation caractéristique admet alors une racine double : » = —a.wg. L’expression générale de u est alors :

u=(At+ B) e >0t
L’expression de la dérivée est :

du
dt

= —a.wo.u + A.e”®wot

En tenant compte des conditions initiales :

du E
= = B M —_— = = A
Uy =0 ’ ( dt ) oi R,C

D’ou I'expression de u :




4.3.2 : Simulation informatique :
En conservant les valeurs précédentes de L et C, on régle @ = % en choisissant R, = Ciwo = 5012, soit, en conservant
E=6V et R, = 6009 : R = % = 54, 5. On obtient pour u la courbe suivante :
g
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Et pour les intensités :
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On constate que la durée du régime transitoire est environ 7 fois plus courte que dans le cas précédent. On peut démontrer
que le cas particulier du régime critique est le cas ou le régime asymptotique est obtenu le plus rapidement sans dépas-
sement de la valeur asymptotique. Si on tolére un léger dépassement de la valeur asymptotique avant stabilisation, on
peut montrer que le régime transitoire le plus court correspond & o =0, 7.

4.4 : Etude du régime apériodique :

4.4.1 : Etude théorique :

Cette situation correspond & :

1
A >0 soit a>1 ou Q<§

Les racines de I’équation caractéristiques sont deux valeurs réelles positives :

r = —awytwyvVa—1 ; r=—a.wj—wy.vVaz—1

La solution de I’équation différentielle a pour expression générale :

u=Ae"" + B!

Remarque : les deux racines réelles sont nécessairement négatives; des racines positives conduiraient & une limite de u
infinie quand t tend vers I'infini, ce qui est physiquement absurde.

d
ditl = Ary.e™t + Burg.e™?

Les conditions initiales permettent de poser :

du E
AL B~=— . - = ——=A. B.
(o) + 0 ; (dt)0+ R,.C 1+ B.rg
Soit :
Rg~c- (Tl - 7‘2) 2Rg.C.w0.\/ 1— a2

E
u = .
QRQ.C.UJQ.\/ 1—a2

(e’l“l.t _ e’l‘z.t)

4.4.2 : Etude d’un cas particulier :

De fagon a obtenir Q=0,2 soit o = % = 2,5, nous choisissons : R, = C%) = 20Q2. En conservant les caractéristiques du

L . . N . R.R, . . . .
générateurs identiques & celles du cas précédent : R = =—% = 20, 7Q). La simulation conduits aux courbes suivantes :
9
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La encore, il peut étre intéressant de vérifier les valeurs initiales, les coefficients directeurs des tangentes en t = 0 et les
valeurs asymptotiques.

On remarque que la durée du régime transitoire est nettement plus longue que dans le cas précédent du régime critique.

retour a la page principale
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