
Circuit �RLC� parallèle en régime transitoire

Résumé

La plupart des professeurs présentent l'étude du circuit �RLC� série en régime transitoire puis demandent aux étudiants,

en guise d'approfondissement, d'étudier personnellement le circuit �RLC� parallèle. Nombre d'entre eux éprouvent des

di�cultés à �réinvestir� ainsi leurs connaissances. Cette �che devrait les aider !

1 : Position du problème

Figure 1 �

On suppose l'interrupteur (K) ouvert depuis su�sam-
ment longtemps pour que le condensateur soit déchargé
et qu'aucun courant ne circule. On ferme alors l'inter-
rupteur à l'instant de date t=0. Il s'agit d'abord d'étu-
dier qualitativement les valeurs de la tension u et des
quatre intensités à la date t = 0+ puis de prévoir les va-
leurs asymptotiques de ces valeurs. Il faut ensuite établir
l'équation di�érentielle véri�ée par la tension u puis étu-
dier les di�érents régimes possibles suivant la valeur de
la résistance réglable R.

2 : Valeurs à t=0+ :

2.1 : Rappels de cours :

Une bobine d'inductance L parcourue par un courant d'intensité i2 accumule l'énergie magnétique 1
2Li

2
2. De l'énergie ne

peut se créer ou disparaître instantanément : en régime variable, l'énergie est nécessairement fonction continue du temps.
Cela impose la continuité de i2. À retenir : une bobine impose la continuité de l'intensité dans sa branche de
circuit.

Si u désigne la tension aux bornes d'un condensateur, l'énergie électrique emmagasinée par celui-ci vaut : 1
2Cu2. La

continuité de l'énergie impose la continuité de la tension. À retenir : un condensateur impose la continuité de la
tension à ses bornes.

2.2 : Valeurs instantanées à la date t=0+ :

Puisque, pour t<0 : u = 0 ; i = i1 = i2 = i3 = 0, les continuités rappelées précédemment conduisent à :
- continuité de la tension aux bornes du condensateur : u(0+) = 0 ;
- continuité de l'intensité dans la branche de la bobine : i2(0+) = 0 ;

- loi d'Ohm appliquée à R : i1(0+) =
u(0+)

R = 0 ;

- loi d'Ohm appliquée à Rg : i(0+) =
ug(O+)

Rg
=

E−u(0+)

Rg
= E

Rg
;

- loi des n÷uds : i3(0+) = i(0+) − i1(0+) − i2(0+) =
E
Rg

2.3 : Valeurs des dérivées par rapport au temps à la date t=0+ :

Nous allons montrer par la suite que les valeurs instantanées précédentes sont solutions d'équations di�érentielles du
second ordre. Les solutions de ces équations font intervenir deux constantes qu'il est possible de déterminer en connaissant
deux conditions particulières : les valeurs initiales et les valeurs des dérivées par rapport au temps à l'instant initial que nous
allons déterminer dans ce paragraphe.

- tension aux bornes de la bobine : u = Ldi2
dt ; donc :

(
di2
dt

)
0+

= 0 ;
- intensité du courant à travers la branche du condensateur : i3 = C du

dt ; donc :
(
du
dt

)
0+

= E
Rg.C

;

- loi d'Ohm appliquée à R : du
dt = R di1

dt ; donc :
(
di1
dt

)
0+

= E
R.Rg.C

;

- loi d'Ohm appliquée à Rg : i = E−u
Rg

; donc :
(
di
dt

)
0+

= − 1
Rg

(
du
dt

)
0+

= − E
R2

g.C

- en dérivant par rapport à t la loi des n÷uds :
(
di3
dt

)
0+

=
(
di
dt

)
0+

−
(
di1
dt

)
0+

−
(
di2
dt

)
0+

= − E
Rg.C

(
1
Rg

+ 1
R

)
= −E.(R+Rg)

R.R2
g.C
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2.4 : Valeurs asymptotiques :

Il s'agit des valeurs limites lorsque t tend vers l'in�ni c'est à dire des valeurs en régime permanent. Ces valeurs vont
s'obtenir en étudiant les asymptotes aux courbes représentatives des diverses valeurs instantanées. Il est cependant possible
de les obtenir simplement sans calculs compliqués. La comparaison permettra de juger de la pertinence des résultats obtenus.
Puisqu'il s'agit d'étudier le régime permanent, il su�t de considérer toutes les dérivées par rapport au temps
nulles.

- tension aux bornes de la bobine : u = Ldi2
dt ; donc : limt→∞ u = 0 ; ainsi, en régime permanent, la bobine est

équivalente à un interrupteur fermé : elle peut être parcourue par un courant mais la tension à ses bornes est nulle.
- intensité du courant à travers la branche du condensateur : i3 = C du

dt ; donc : limt→∞ i3 = 0 ; ainsi, en régime
permanent, le condensateur se comporte comme un interrupteur ouvert : la tension à ses bornes peut ne pas être
nulle mais aucun courant ne traverse sa branche.

- loi d'Ohm appliquée à R : i1 = u
R = 0 ;

- loi d'Ohm appliquée à Rg : i = ug

Rg
= E−u

Rg
= E

Rg
;

- loi des n÷uds : i2 = i− i1 − i3 = E
Rg

;

2.5 : Récapitulatif des résultats :

u i1 i2 i3 i

Valeurs à t=0+ 0 0 0 E
Rg

E
Rg

Dérivées à t=0+ E
Rg.C

E
R.Rg.C

0 −E.(R+Rg)
R.R2

g.C
−E
R2

g.C

Valeurs pour t → ∞ 0 0 E
Rg

0 E
Rg

3 : Équation di�érentielle véri�ée par u :

Une méthode simple possible consiste à écrire la loi des n÷uds , à dériver tous les termes par rapport au temps puis à
exprimer chaque dérivée en fonction de u ou des dérivées de u par rapport au temps.

di

dt
=

di1
dt

+
di2
dt

+
di3
dt

i =
ug

Rg
= E−u

Rg
; donc : di

dt = − 1
Rg

du
dt ;

i1 = u
R ; donc : di1

dt = 1
R

du
dt ;

u = Ldi2
dt ; donc : di2

dt = u
L ;

i3 = C du
dt ; donc :

di3
dt = C d2u

dt2

D'où l'équation di�érentielle :

− 1

Rg

du

dt
=

u

L
+

1

R

du

dt
+ C

d2u

dt2

Pour alléger les notations, on pose : 1
Re

= 1
R + 1

Rg
soit : Re =

R.Rg

R+Rg
: résistance équivalente à l'association en parallèle

de R et de Rg. En ordonnant l'équation di�érentielle précédente :

d2u

dt2
+

1

Re.C
· du
dt

+
1

LC
· u = 0

Remarque : Une fois l'interrupteur fermé, il est possible de remplacer le générateur linéaire de tension (f.é.m. E,
résistance interne Rg) par le générateur linéaire de courant équivalent : courant électromoteur E

Rg
,résistance interne Rg. Il

est alors possible de remplacer les deux résistances en parallèle par leur résistance équivalente Re déjà dé�nie plus haut.

La loi des n÷uds conduit à :

E

Rg
= i′ + i2 + i3 soit : 0 =

di′

dt
+

di2
dt

+
di3
dt

1

Re
· du
dt

+
u

L
+ C · d

2u

dt2
= 0 soit :

d2u

dt2
+

1

Re.C
· du
dt

+
1

LC
· u = 0
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On retrouve heureusement la même équation di�érentielle que par l'autre méthode !

Le cas particulier d'un amortissement nul correspond à 1
Re.C

= 0. L'équation di�érentielle devient alors très simple :

d2u

dt2
+

1

LC
· u = 0

Elle admet une solution sinusoïdale de pulsation ω0 appelée pulsation propre du circuit. En posant :
u = Um. cos (ω0.t+ φ), la dérivée seconde par rapport au temps a pour expression : d2u

dt2 = −ω2
0 .u.

L'identi�cation permet de dé�nir la pulsation propre :

ω0 =
1√
L.C

Le produit ReC ayant la dimension physique d'un temps, son inverse à la dimension physique d'une pulsation, d'où
l'habitude de poser 1

Re.C
proportionnel à la pulsation propre. Une tendance récente consiste à écrire :

1

Re.C
=

ω0

Q

où Q est un nombre sans dimension appelé � facteur de qualité � du circuit. Cette notation présente deux inconvénients :
1° : l'existence de Q au dénominateur complique fortement les calculs :
2° : comme cela va apparaître très bientôt dans le calcul du discriminant : faire apparaître un � 2 � dans la constante

allège notablement les calculs.
Nous poserons donc :

1

Re.C
= 2.α.ω0

ce qui revient à poser :

Q =
1

2α
= Re.C.ω0 = Re.

√
C

L

4 : Les trois cas de régime transitoire :

4.1 : Généralités :

L'équation di�érentielle véri�ée par u s'écrit donc de manière générale :

d2u

dt2
+ 2.α.ω0 ·

du

dt
+ ω2

0 · u = 0

On cherche des solutions de la forme : u = K.er.t.

du

dt
= r.u ;

d2u

dt2
= r2.u

r est ainsi solution de l'équation caractéristique :

r2 + 2.α.ω0 · r + ω2
0 = 0

Son discriminant vaut :

△ = 4.α2.ω2
0 − 4.ω2

0 = 4.ω2
0 .
(
α2 − 1

)
Remarque : on voit bien ici l'intérêt du � 2 � introduit dans la constante.

4.2 : Régime pseudo-périodique :

4.2.1 : Étude théorique :

Il correspond à :

△ < 0 soit α < 1 soit Q >
1

2

Les racines de l'équation caractéristique sont deux complexes conjuguées :

r1 = −α.ω0 + j.ω0.
√
1− α2 ; r2 = −α.ω0 − j.ω0.

√
1− α2

Pour alléger les notations, on peut dé�nir la pseudo pulsation ω par la relation :

ω = ω0.
√
1− α2 = ω0.

√
1− 1

4Q2
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Les solutions sont alors de la forme :

u = Um.e−α.ω0.t. cos (ω.t+ φ) = e−α.ω0.t. (K1. cos (ω.t) +K2. sin (ω.t))

Remarque 1 : ce régime peut être décrit comme un régime d'oscillations de pseudo pulsation ω dont l'amplitude décroît
exponentiellement au cours du temps.

Remarque 2 : la solution fait intervenir deux constantes (K 1 et K 2 ou Um et φ), d'où la nécessité de connaître deux
conditions particulières : en général la valeur initiale et la valeur initiale de la dérivée par rapport au temps.

u(0) = 0 = K1. L'expression de la dérivée par rapport au temps s'écrit alors :
u = e−α.ω0.t.K2. sin (ω.t) d'où l'expression de la dérivée : du

dt = −α.ω0.u+ ω.e−α.ω0.t.K2. cos (ω.t)(
du
dt

)
0+

= E
Rg.C

= ω.K2 ; d'où l'expression de u pour le montage étudié ici :

u =
E

Rg.C.ω
· e−α.ω0.t · sin (ω.t)

Remarque 3 : pour estimer la durée de ce régime transitoire, on part de la constatation suivante : e−5 ≈ 6, 7.10−3 ;
(
1− e−5

)
≈

99, 3.10−2. On peut donc considérer qu'au bout d'une durée t1 = 5
α.ω0

= 10Q
ω0

le régime permanent est atteint avec une erreur
relative commise inférieure à 0,7%.

Remarque 4 : ayant obtenu l'expression de u en fonction de t, il est facile d'obtenir les expressions des di�érentes intensités
à partir des relations :

i1 =
u

R
; i3 = C.

du

dt
; i =

E − u

Rg
; i2 = i2 = i− i1 − i3

4.2.2 : Étude d'un cas particulier :

Nous choisissons : L=100mH et C=10µF de façon à obtenir une pulsation propre : ω0 = 1√
L.C

= 103rad/s. De façon à

obtenir Q=5 soit α = 1
2Q = 0, 1, nous choisissons : Re =

Q
Cω0

= 500Ω.

Remarque : pour certains générateurs : Rg = 600Ω ; il faut donc ajuster R de sorte que : 1
Re

= 1
Rg

+ 1
R soit R =

R.Rg

Rg−R =

3kΩ. Pour E=6V, une simulation informatique du fonctionnement du circuit conduit pour u à la courbe suivante :

Printing Time:dimanche 21 janvier 2018, 14:09:42

u(t)

temps (s)
0 50m10m 40m20m 30m

te
ns

io
n

(V
)

-750m

1

-500m

750m

-250m

500m

0

250m

Il est possible de véri�er l'accord entre cette courbe et l'étude théorique précédente. Je présente ci-dessous les courbes
correspondant aux di�érentes intensités. Je laisse le lecteur véri�er que les valeurs initiales, les coe�cients directeurs des
tangentes en t=0 ainsi que les valeurs asymptotiques sont conformes à l'étude théorique résumée dans le tableau �2.5 ...
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intensités des courants
Printing Time:dimanche 21 janvier 2018, 18:46:23

i3 i i1 i2
Time (s)

0 50m10m 40m20m 30m

in
te

ns
ité

s
(A

)

-8m

18m

-6m

16m

-4m

14m

-2m

12m

0

10m

2m

8m

4m

6m

4.2.3 : Exemple de détermination de Q.

Il est fréquent en travaux pratique de devoir mesurer Q à partir d'un enregistrement de la courbe u=f(t) obtenue à l'aide
d'un oscilloscope numérique ou d'une carte d'acquisition. On peut commencer par remarquer que les maximums successifs
de u sont obtenus à dates successives séparées de T la pseudo période. Cela se démontre aisément à partir de l'expression de
la dérivée de u par rapport à t :

du

dt
=

E

Rg.C.ω
· e−α.ω0.t · [ω. cos (ω.t)− α.ω0. sin (ω.t)]

Les extremums de u sont obtenus pour une valeur nulle de la dérivée, soit pour :

tan (ω.t) =
ω

α.ω0
=

√
1− α2

α

Ce qui prouve que l'on obtient un maximum toutes les T secondes et un minimum toutes les T secondes avec comme
expression de l pseudo période :

T =
2π

ω
=

2π

ω0.
√
1− α2

=
T0√
1− α2

=
2π

√
L.C√

1− 1
4Q2

Pour véri�er expérimentalement la décroissance exponentielle de l'amplitude, on relève les maximums successifs de u et
les dates correspondantes.

On constate que la durée entre deux maximums successifs est très proche de 6,30ms. On peut donc poser T ≈ 6, 30ms
Comme prévu par la théorie précédente, cette valeur est bien un peu supérieure à la période propre : T0 = 2π

ω0
≈ 6, 28ms.

Cependant, l'écart relatif est trop faible entre T et T0 pour permettre une détermination précise de α et de Q. On préfère
utiliser la méthode du décrément logarithmique. Par dé�nition, le décrément logarithmique vaut :

δ = ln

(
u(t)

u(t+ T )

)
Soit ici :

δ = ln

(
exp (−α · ω0 · t) · sin (ω · t)

exp (−α · ω0 · (t+ T )) · sin (ω · (t+ T ))

)
= ln (exp (α.ω0 · T )) = α.ω0 · T

puisque : sin (ω · (t+ T )) = sin (ω · t+ 2π) = sin (ω · t) ∀t .
Soit encore :
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δ =
α.ω0 · T0√
1− α2

= 2π · α√
1− α2

ou :

δ = 2π · 1

2Q.
√

1− 1
4Q2

=
2π√

4Q2 − 1

On s'intéresse aux six premiers maximums successifs :

n 0 1 2 3 4 5

t(ms) 1,502 7,804 14,107 20,409 26,711 33,002
u(t) (mV) 862,33 458,70 243,96 129,73 69,99 36,69
ln(u(t)) 6,760 6,128 5,497 4,865 4,234 3,602

tn- tn-1 (ms) 6,302 6,303 6,302 6,302 6,291

Si on note Uo la valeur du premier maximum de u, pour lequel n=0, la valeur du deuxième maximum (n=1) est
Uo. exp (−δ) ; la valeur du troisième maximum (n=2) est Uo. exp (−2δ) ; plus généralement, la valeur du maximum de
numéro n est Uo. exp (−n.δ), de sorte qu'il est possible de poser, pour les maximums successifs :

ln
(
u(t)

)
= −n.δ + ln (U0)

Figure 2 �

Pour véri�er expérimentalement le caractère expo-
nentiel de l'amortissement et mesurer le décrément lo-
garithmique, il su�t de représenter en fonction de n le
logarithme des maximums successifs. Puisque les valeurs
proviennent d'une simulation informatique, l'accord avec
la théorie est évidemment excellent comme en témoigne
la valeur du carré du coe�cient de régression extrême-
ment proche de 1. On en déduit la valeur du décrément
logarithmique : δ ≈ 0, 631. Cela permet d'obtenir le fac-
teur de qualité :

Q =

√
π2

δ2
+

1

4
≈ 5, 004

Là encore bien sûr : l'accord avec la théorie est ex-
cellent !

4.3 : Étude du régime critique :

4.3.1 : Étude théorique :

Il s'agit du cas limite correspondant à :

△ = 0 soit α = 1 ou Q =
1

2

L'équation caractéristique admet alors une racine double : r = −α.ω0. L'expression générale de u est alors :

u = (A.t+B) · e−α.ω0.t

L'expression de la dérivée est :

du

dt
= −α.ω0.u+A.e−α.ω0.t

En tenant compte des conditions initiales :

u(0) = 0 = B ;

(
du

dt

)
0+

=
E

Rg.C
= A

D'où l'expression de u :

u =
E

Rg.C
· t · e−α.ω0.t
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4.3.2 : Simulation informatique :

En conservant les valeurs précédentes de L et C, on règle Q = 1
2 en choisissant Re = Q

Cω0
= 50Ω, soit, en conservant

E=6V et Rg = 600Ω : R =
R.Rg

Rg−R = 54, 5Ω. On obtient pour u la courbe suivante :

Printing Time:dimanche 21 janvier 2018, 15:12:45

V(u)

u(t)

temps (s)
0 7m1m 6m2m 5m3m 4m

te
ns

io
n

(V
)

0

400m

80m

320m

160m

240m

Et pour les intensités :

intensités des courants
Printing Time:dimanche 21 janvier 2018, 18:51:08

i3 i i1 i2
temps (s)

0 7m1m 6m2m 5m3m 4m

in
te

ns
ité

s
(A

)

-2.5m

10.0m

-1.3m

8.7m

0.0

7.5m

1.3m

6.3m

2.5m

5.0m

3.8m
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On constate que la durée du régime transitoire est environ 7 fois plus courte que dans le cas précédent. On peut démontrer
que le cas particulier du régime critique est le cas où le régime asymptotique est obtenu le plus rapidement sans dépas-
sement de la valeur asymptotique. Si on tolère un léger dépassement de la valeur asymptotique avant stabilisation, on
peut montrer que le régime transitoire le plus court correspond à α = 0, 7.

4.4 : Étude du régime apériodique :

4.4.1 : Étude théorique :

Cette situation correspond à :

△ > 0 soit α > 1 ou Q <
1

2

Les racines de l'équation caractéristiques sont deux valeurs réelles positives :

r1 = −α.ω0 + ω0.
√

α2 − 1 ; r2 = −α.ω0 − ω0.
√
α2 − 1

La solution de l'équation di�érentielle a pour expression générale :

u = A.er1.t +B.er2.t

Remarque : les deux racines réelles sont nécessairement négatives ; des racines positives conduiraient à une limite de u
in�nie quand t tend vers l'in�ni, ce qui est physiquement absurde.

du

dt
= A.r1.e

r1.t +B.r2.e
r2.t

Les conditions initiales permettent de poser :

u(0) = A+B = 0 ;

(
du

dt

)
0+

=
E

Rg.C
= A.r1 +B.r2

Soit :

A = −B =
E

Rg.C. (r1 − r2)
=

E

2Rg.C.ω0.
√
1− α2

u =
E

2Rg.C.ω0.
√
1− α2

·
(
er1.t − er2.t

)
4.4.2 : Étude d'un cas particulier :

De façon à obtenir Q=0,2 soit α = 1
2Q = 2, 5, nous choisissons : Re = Q

Cω0
= 20Ω. En conservant les caractéristiques du

générateurs identiques à celles du cas précédent : R =
R.Rg

Rg−R = 20, 7Ω. La simulation conduits aux courbes suivantes :
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u(t)
Printing Time:dimanche 21 janvier 2018, 18:23:27

V(u)
temps (s)

0 20m5m 15m10m
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intensités des courants
Printing Time:dimanche 21 janvier 2018, 18:52:00

i3 i i1 i2
Time (s)

0 20m5m 15m10m

in
te
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s
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-1.0m

10.0m

0.0
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8.0m
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3.0m

6.0m

4.0m

5.0m

Là encore, il peut être intéressant de véri�er les valeurs initiales, les coe�cients directeurs des tangentes en t = 0 et les
valeurs asymptotiques.

On remarque que la durée du régime transitoire est nettement plus longue que dans le cas précédent du régime critique.

retour à la page principale
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