
Comportement d’un satellite artificiel au voisinage des points de
Lagrange L1 et L4.

De nombreuses études des points de Lagrange sont déjà disponibles sur internet. Je pense en particulier au
document publié par M. Gilbert Gastebois :

https://ggastebois.fr/java/poincare/lagrange/lagrange_theorie.pdf.
Mon objectif est plus modeste : il s’agit de rendre compréhensible à des étudiants de niveau (bac+1) ou plus

l’existence de tels points puis de simuler par informatique le mouvement d’un satellite artificiel au voisinage du
point de Lagrange L1 puis du point de Lagrange L4.

I. ÉTUDE PRÉLIMINAIRE DU SYSTÈME SOLEIL - TERRE.
Nous nous limitons au système soleil - terre : les influences des autres planètes du système solaire et de la lune

sont négligées. On note O le centre du soleil de masse MS et T le centre de la terre de masse MT. Ce système
étant supposé isolé dans l’espace, son centre d’inertie G est, d’après le principe d’inertie, animé d’un mouvement
d’accélération nulle par rapport à un repère lié à un système d’étoiles fixes très éloignées et considéré comme
galiléen. Un repère (R) d’origine G dont les trois axes sont orientés vers trois étoiles suffisamment éloignées pour
être considérées comme fixes est donc lui aussi galiléen.

Données : MS=1,99.1030kg ; MT=5,97.1024kg. On note ”a” la distance de O à T et r = GO ; r’=GT avec a = r
+ r’.
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Les forces gravitationnelles exercées par la soleil sur la terre et par la terre sur le soleil vérifient la loi de Newton
sur la gravitation :

−−→
FST = −

−−→
FTS = −G · MSMT

a2
· −→u

avec : −→u : vecteur unitaire colinéaire au vecteur
−→
OT ; G = 6,67.10-11U.S.I. : constante universelle de la gravitation.

Seconde loi de Newton appliquée à la terre dans le repère (R) :

d2
−→
GT

dt2
=

−−→
FST

MT

Seconde loi de Newton appliquée au soleil dans le repère (R) :

d2
−−→
GO

dt2
=

−−→
FTS

MS
= −

−−→
FST

MS

Par ”soustraction membre à membre”, on obtient :

d2
−→
GT

dt2
− d2

−−→
GO

dt2
=

d2
(−−→
OG+

−→
GT
)

dt2
=

d2
−→
OT

dt2
=

−−→
FST ·

(
1

MS
+

1

MT

)
On appelle ”masse réduite” µ du système terre - soleil la grandeur vérifiant :

1

µ
=

1

MS
+

1

MT
soit : µ =

MS ·MT

MS +MT

Cela conduit à :

µ · d
2−→OT

dt2
=

−−→
FST

Conséquences de ce résultat : pour étudier le mouvement des centres T et O de la terre et du soleil dans le
repère (R), on commence par étudier le mouvement dans (R) d’une particule fictive P de masse µ telle qu’à chaque
instant :

−−→
GP =

−→
OT = a · −→u soumise à la seule force de vecteur

−−→
FST = −G · MSMT

a2 · −→u .

µ · d
2−−→GP

dt2
=

−−→
FST = −G · MSMT

a2
· −→u

On revient ensuite aux mouvements respectifs de T et de O dans R en considérant que G est le barycentre des
points O et T.

Cela nous ramène à étudier le mouvement de la particule fictive P soumise à une force centrale. Cette étude est
faite de façon détaillée sur la fiche n° 8. Le mouvement a lieu dans un plan fixe de (R) appelé ”plan de l’écliptique”
que nous noterons (Pe) par la suite. Les mesures astronomiques montrent que P est animé d’un mouvement elliptique
de très faible excentricité : e = 0,0167. Nous ferons donc ici l’approximation d’un mouvement circulaire uniforme
de rayon a égal à la distance moyenne OT : a = 1,50.1011m.

Dans ce cas simple, l’accélération est radiale centripète :

d2
−−→
GP

dt2
= −a · Ω2 · −→u

où Ω désigne la vitesse angulaire de P. On obtient :

− MS ·MT

MS +MT
· a · Ω2 · −→u = −G · MSMT

a2
· −→u

Soit après simplification :

Ω =

√
G (MS +MT )

a3
soit : Ω ≈ 1, 99.10−7rad/s

Ayant ainsi obtenu le mouvement de P dans (R) : un mouvement circulaire uniforme de centre G, de rayon a,
de vitesse angulaire Ω, on obtient les positions de T et O par les relations classiques concernant le barycentre :

−→
GT =

−−→
GP · MS

MS +MT
;

−−→
GO = −

−−→
GP · MT

MS +MT

Remarque sur les ordres de grandeurs : j’ai tenu à traiter le problème dans le cas général mais ici : MT ≪ MS.
Il en résulte :

−−→
GO ≈ −→

0 ;
−→
GT≈

−−→
GP =

−→
OT . Le centre de gravité est pratiquement confondu avec le centre O du

soleil. Ce qui revient à considérer le soleil comme fixe dans le repère (R) et à confondre le mouvement du point P
et le mouvement du centre T de la terre.
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Animation au format .avi ou .mp4 En cliquant, en fonction de son matériel, sur un des deux liens ci-dessous,
on fait apparaître une animation illustrant les résultats précédents. À intervalle de temps constant égal au centième
de la période, apparaissent les positions successives des points suivants :

- en noir : le point fictif P qui décrit un mouvement elliptique dont G est un foyer ;
- en rouge : le centre T de l’astre le plus léger
- en bleu : le centre S de l’astre le plus lourd.
Pour une meilleure visibilité le rapport des masses est choisi égal à 4. Choisir le rapport réel des masses aurait

conduit à S pratiquement immobile et confondu avec G et T quasiment confondu avec P.
On obtient aussi une visualisation de la loi des aires : la distance parcourue pendant chaque durée (T/100), est

minimale au voisinage de l’aphélie et maximale au voisinage du périhélie.

Animation au format .avi Animation au format .mp4

II. LES POINTS DE LAGRANGE.
Dorénavant, nous nous intéressons au mouvement et aux éventuelles positions d’équilibre d’un satellite assimi-

lable à un point matériel S de masse m. On suppose m très inférieure aux masses de la terre et du soleil de sorte
que la présence du satellite ne modifie pas sensiblement le mouvement de la terre dans (R) par rapport au soleil.
L’étude est menée dans le repère tournant (R’) à la vitesse angulaire Ω autour d’un axe (Gz) passant par G et
orthogonal au plan de l’écliptique. Dans ce repère tournant (R’), les actions exercées sur le satellites sont :

- La force gravitationnelle exercée par le soleil, dont l’expression est :

−→
FS = −mGMS

−→
OS

∥
−→
OS∥3

- La force gravitationnelle exercée par la terre, dont l’expression est :

−→
FT = −mGMT

−→
TS

∥
−→
TS∥3

- La pseudo force d’inertie d’entraînement centrifuge due à la rotation de (R’) par rapport au repère galiléen
(R) :

−→
Fie = mΩ2 ·

−−→
HS

où H est le projeté orthogonal de S sur l’axe (Gz) contenant le point G et orthogonal au plan de l’écliptique.
- La pseudo force d’inertie de Coriolis qui dépend de la vitesse

−→
V de S par rapport à (R’) :

−→
Fic = −2mΩ−→uz ∧

−→
V

où −→uz est un vecteur unitaire orthogonal au plan de l’écliptique dont le sens dépend du sens de rotation de l’axe
(OT) selon la règle du ”tire bouchon de Maxwell”.

On appelle ”points de Lagrange” les positions d’équilibres possibles de S dans (R’). À l’équilibre la pseudo
force d’inertie de Coriolis est évidemment nulle. L’équilibre correspond donc à :

−→
Fie +

−→
FT +

−→
FS =

−→
0

Cette somme vectorielle ne peut être nulle qu’avec trois vecteurs forces coplanaires. Les vecteurs
−−→
HS,

−→
TSet

−→
OS

doivent être coplanaires, ce qui n’est possible que si S appartient au plan de l’écliptique. Nous obtenons ainsi un
premier résultat : Les points de Lagrange appartiennent nécessairement au plan de l’écliptique.

La recherche systématique des points de Lagrange n’est pas l’objectif de cette étude. Elle est très bien menée dans
l’article de Gilbert Gastebois cité en introduction. Nous nous limitons dans un premier temps, à l’étude détaillée
du point L1 : point situé sur l’axe GT, entre la terre et le soleil.

O G L1 T
x’

y’
Uz

Fs

FT

Fie

(R’)

Ux

Uy
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Soit L la distance TL1 entre le centre de la terre et le point L1. La condition d’équilibre du satellite S en L1
s’écrit :

∥
−→
FS∥ = ∥

−→
FT ∥+ ∥

−→
Fie∥

GMS

(a− L)
2 =

GMT

L2
+Ω2 (a− L−OG) =

GMT

L2
+Ω2

(
a− L− a

MT

MT +MS

)
=

GMT

L2
+Ω2

(
a

MS

MS +MT
− L

)

GMT · (a− L)
2
+Ω2

(
a

MS

MS +MT
− L

)
L2 (a− L)

2 −GMS · L2 = 0

Une résolution numérique conduit à :

L = 1, 49.109m

Pour bien fixer les idées, on peut remarquer que cette distance représente environ le centième de la distance
terre - soleil. L1 est donc beaucoup plus près de la terre que du soleil. Cependant, cette distance représente aussi
environ 234 rayon terrestres (RT = 6378km). L1 est donc beaucoup plus loin de la terre que la plupart des satellites
artificiels : un satellite géostationnaire a une altitude d’à peine 6RT. Cependant cette position est utilisée par les
astronomes : le satellite Soho y est placé de façon à observer le soleil de façon permanente ; le fait qu’il s’agisse
d’une position d’équilibre relatif diminue fortement l’énergie nécessaire à son maintien en L1, sans que cette énergie
nécessaire ne soit nulle, comme nous allons le montrer par la suite...

III. INSTABILITÉ DE LA POSITION L1.
Imaginons que le satellite soit abandonné sans vitesse par rapport à (R’) en un point proche de L1. Deux

situations sont alors envisageables :
- quelle que soit cette position proche de L1, S se rapproche de L1 et finit par s’y immobiliser ; dans ce cas, L1

sera qualifiée de position d’équilibre stable ;
- quelle que soit cette position proche de L1, S s’éloigne définitivement de L1 ; dans ce cas, L1 sera qualifiée de

position d’équilibre instable.
Il est assez simple de montrer qualitativement que L1 est une positions d’équilibre instable. Imaginons par

exemple un petit déplacement de S à partir de L1, le long de l’axe (OT) en direction de la terre. Les expressions
des trois forces indiquées plus haut montrent clairement que le déplacement considéré augmente les intensités des
deux forces orientées vers la terre et diminue l’intensité de la force orientée vers le soleil. Conséquence : S s’éloigne
définitivement de L1 en se rapprochant de la terre. On montrerait de la même manière qu’un petit déplacement de
S à partir de L1 en direction du soleil entraîne un mouvement de S en direction du soleil. Cette méthode simplifiée
ne permet pas de savoir ce qui se passerait si S était écarté de L1 sans rester sur l’axe (OT). Pour cela, il faut
s’intéresser à l’énergie potentielle de S. Nous allons noter (x,y,z) les coordonnées de S dans le repère d’origine L1 :
(L1,−→ux,

−→uy,
−→uz).

1. Énergie potentielle associée à la force gravitationnelle exercée par le soleil. L’expression de cette
énergie a été démontrée fiche n° 8 :

Ep1 = −GmMS

∥
−→
OS∥

−→
OS =

−−→
OL1 +

−−→
L1S = (a− L+ x)−→·ux + y · −→uy + z · −→uz

Ep1 = − GmMS√
(a− L+ x)

2
+ y2 + z2

2. Énergie potentielle associée à la force gravitationnelle exercée par la terre.

Ep2 = −GmMT

∥
−→
TS∥

−→
TS =

−−→
TL1 +

−−→
L1S = (x− L) · −→ux + y · −→uy + z · −→uz

Ep2 = − GmMT√
(x− L)

2
+ y2 + z2
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3. Énergie potentielle associée à la pseudo force d’inertie centrifuge. Il est préférable ici d’utiliser le
système de coordonnées cylindrique (ou cylindro-polaire) en posant :

−→
GS =

−−→
GH +

−−→
HS = z · −→uz + r · −→ur

où H est le projeté orthogonal de S sur l’axe (Gz). La pseudo force d’inertie centrifuge a pour expression :

−→
Fie = mΩ2 · r · −→ur

Sachant que : r · −→ur =
−−→
grad

(
r2

2

)
, il est possible d’écrire que la pseudo force dérive d’une énergie potentielle :

−→
Fie = −

−−→
grad (Ep3) avec : Ep3 = −1

2
mΩ2 · r2 = −1

2
mΩ2 · ∥

−−→
HS∥2

−−→
HS =

−→
OS −

−−→
GH =

−−→
OL1 +

−−→
L1S −

−−→
GH =

(
a · MS

MS +MT
− L+ x

)
· −→ux + y · −→uy

Ep3 = −1

2
mΩ2 ·

[(
a · MS

MS +MT
− L+ x

)2

+ y2

]

4. Énergie potentielle associée à la pseudo force d’inertie de Coriolis. La puissance instantanée de cette
pseudo force, mesurée dans le repère tournant (R’) a pour expression :

p(t) =
−→
Fic ·

−→
V = −

(
2mΩ−→uz ∧

−→
V
)
·
−→
V = 0 ∀t

(Propriété évidente des produits mixtes)
Cette pseudo force ne travaille donc pas. L’énergie potentielle associée est donc une constante qu’il est possible

de choisir nulle.

Ep4 = 0

5. Variations d’énergie potentielle au voisinage du point L1. L’expression générale de l’énergie potentielle
de S est proportionnelle à la masse m de S. Désormais, nous nous intéresserons à l’énergie potentielle massique de
S :

ep =
Ep

m
= − GMS√

(a− L+ x)
2
+ y2 + z2

− GMT√
(x− L)

2
+ y2 + z2

− 1

2
Ω2 ·

[(
a · MS

MS +MT
− L+ x

)2

+ y2

]

a) Influence de z sur l’énergie potentielle massique du satellite. Inutile de faire un calcul de dérivée
partielle : z apparaît élevé au carré aux dénominateurs de deux expressions négatives. Tout déplacement hors du
plan de l’écliptique entraîne une diminution de la valeur absolue de l’énergie potentielle, donc une augmentation de
l’énergie potentielle. Les minimums locaux d’énergie potentielle, s’ils existent, seront nécessairement obtenus dans le
plan de l’écliptique. Cela est bien sûr cohérent avec un résultat déjà acquis, les positions d’équilibres appartiennent
nécessairement à ce plan.

b) Influence de x et y sur l’énergie potentielle massique du satellite. Nous allons maintenant étudier
les variations d’énergie potentielle massique dans le plan de l’écliptique, c’est à dire en posant : z = 0.

ep =
Ep

m
= − GMS√

(a− L+ x)
2
+ y2

− GMT√
(x− L)

2
+ y2

− 1

2
Ω2 ·

[(
a · MS

MS +MT
− L+ x

)2

+ y2

]

De nombreux logiciels (SCILAB, MATLAB, Maple...) permettent le tracé des lignes équipotentielles dans le
plan de l’écliptique. Voici le résultat obtenu grâce à MATLAB dans un carré de côté égal à 2RT(12560km environ).
La croix rouge correspond à L1 ; les valeurs de (△ep = ep − ep(L1)) sont indiquées à côté des courbes.
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La résultante des trois forces étudiées précédemment a pour expression :

−→
F = −m ·

−−→
grad (ep)

Cette résultante en un point est donc orientée selon la normale à l’équipotentielle passant par ce point dans le
sens des énergies potentielles décroissantes. Les équipotentielles confirment les résultats déjà acquis pour les point
sur l’axe (OT), l’axe horizontal ici : Le point L1 correspond à un maximum d’énergie potentielle : il s’agit donc
d’une position d’équilibre instable. Pour des points situés sur un axe passant par L1 orthogonal au précédent :
L1 correspond à un minimum local d’énergie potentielle. De façon plus générale, ces trois forces tendent à
rapprocher le satellite de l’axe (OT) tout en l’éloignant de façon définitive du point L1.

IV. SIMULATION DU MOUVEMENT D’UN SATELLITE AU VOISI-
NAGE DE L1.
1. Méthode d’Euler. Il s’agit de la méthode la plus simple. Nous allons en tester l’efficacité sur un mouvement
particulièrement simple dont l’étude théorique précise est facile. Nous allons étudier le mouvement d’un satellite quasi
ponctuel de masse m dans le repère géocentrique en négligeant toutes les forces autre que l’attraction gravitationnelle
exercée par la terre, ce mouvement étant circulaire uniforme de rayon R=8000km. Déterminons la vitesse et la
période orbitale d’un tel satellite.

La seconde loi de Newton conduit à :

−→
F = m · −→a soit : −GMT ·m

R2
−→ur = −m · V 2

R
· −→ur

V =

√
GMT

R
et : T =

2πR

V
= 2π

√
R3

GMT

Applications numériques :

V = 7059m/s ; T = 7121s ≈ 1, 98h
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Pour la simulation, nous allons travailler en coordonnées cartésiennes dans le repère (T,X,Y). À l’instant initial,
le satellite est en So de coordonnées (R,0) avec un vecteur vitesse de coordonnées (0,V). À un instant quelconque
de date t, les coordonnées de S sont (x,y) et sont accélération vérifie :

−→a = − GMT

(x2 + y2)
−→ur = − GMT

(x2 + y2)
·

−→
TS

∥
−→
TS∥

= − GMT

(x2 + y2)
3
2

(x · −→ux + y · −→uy)

Cela nous conduit à intégrer numériquement les deux équations différentielles suivantes :ẍ = −GMT · x

(x2+y2)
3
2

ÿ = −GMT · y

(x2+y2)
3
2

Pour cela, on utilise les développements de Taylor limités au premier ordre :

f(t+△t) = f(t) +△t · f ′(t) + o(△t2)

Supposons l’état du satellite connu à un instant de date t, on obtient l’état à la date (t+△t) on utilisant le
résultat précédent et en négligeant les termes d’ordre supérieur à un en △t.{

ẋ(t+△t) = ẋ(t) +△t · ẍ(t) x(t+△t) = x(t) +△t · ẋ(t)
ẏ(t+△t) = ẏ(t) +△t · ÿ(t) y(t+△t) = y(t) +△t · ẏ(t)

On calcule alors les coordonnées de l’accélération à la date (t+△t) et on refait la même étude à la date (t+ 2△t),
puis à la date (t+ 3△t) et ainsi de suite. Cette étude peut se faire à l’aide d’un simple tableur type ”LibreOffice”
ou ”Excel”.
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A B C D E F G H
1 GMt : 3,986E14 V : 7059 △t : =D1/360
2 t x y x’ y’ x” y” r
3 0 8E6 0 0 =D1 formule formule =racine(B3^2+C3^2)
4 =A3+F$1 formule formule =racine(B4^2+C4^2)
5
...

404
La première ligne est réservée à l’entrée des constantes numériques. La seconde ligne précise les grandeurs figurant

dans le tableau. La troisième ligne fixe les conditions initiales.
La cellule F3 contient la formule permettant de calculer ẍ noté ici par commodité x” :
-B$1*B3/(B3^2+C3^2)^1,5
La celluleG3 contient la formule permettant le calcul de y” :
-B$1*C3/(B3^2+C3^2)^1,5
Remarques : une formule doit toujours commencer par les symboles ”+”, ”-” ou ”=” ; bien faire la différence dans

l’écriture des formules entre les adresses de cellules dites ”relatives” qui se modifient automatiquement lors des copies
vers le bas (ou vers la droite) des adresses dites ”absolues” qui restent fixes lors des copies. L’abscisse ou l’ordonnée
(ou les deux) est (sont) rendue(s) fixe(s) par l’ajout du symbole ”$”devant la (ou les) coordonnée(s) à fixer.

En ligne 4, il faut entrer les formules d’Euler.Cela donne en D4 :
=D3+F$1*F3
En E4 :
=E3+F$1*G3
En B4 :
=B3+F$1*D3
En C4 :
=C3+F$1*E3
Une fois la ligne 4 complète, il faut la sélectionner en entier et faire une copie vers le bas jusqu’à la ligne 404. Il

est alors possible de visualiser la trajectoire et de contrôler si elle est bien circulaire en vérifiant dans quelle mesure
la valeur de r reste proche de R. On obtient les résultats suivants où la croix rouge correspond au centre de la terre :
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Le résultat n’est pas satisfaisant : la trajectoire modélisée n’est pas un cercle et n’est pas fermée. La courbe de
droite représente l’évolution au cours du temps de l’erreur sur la distance terre - satellite : er = 100 r−R

R . Cette
erreur relative augmente au cours du temps de façon logique : chaque ”pas de calcul” résulte d’approximations qui
génèrent des erreurs qui se cumule au fil des calculs. On peut améliorer la situation en diminuant le pas de calcul.
Voici le résultat obtenu en divisant par deux le pas de calcul, ce qui suppose de programmer 800 lignes de calculs.
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La situation est nettement améliorée mais n’est toujours pas satisfaisante.

2. Méthode d’Euler améliorée. Une amélioration imaginable consiste à pousser le développement à un ordre
plus élevé, à l’ordre deux par exemple :

f(t+△t) = f(t) +△t · f ′(t) +
1

2
△t2 · f ′′(t) + o(△t3)

Cette amélioration n’est pas applicable en mécanique : il nous faudrait connaître l’expression de la dérivée
seconde de la vitesse, c’est à dire l’expression de la dérivée de l’accélération par rapport au temps ; aucune loi
physique ne permet d’obtenir son expression...

L’amélioration la plus simple consiste tout simplement à déterminer les coordonnées à partir de la vitesse à la
date (t+△t) plutôt qu’à la date t comme prévue par le développement de Taylor :{

ẋ(t+△t) = ẋ(t) +△t · ẍ(t) x(t+△t) = x(t) +△t · ẋ(t+△t)

ẏ(t+△t) = ẏ(t) +△t · ÿ(t) y(t+△t) = y(t) +△t · ẏ(t+△t)

Montrons l’intérêt de cette méthode dans le cas de l’abscisse x :

x(t+△t) = x(t) +△t · ẋ(t+△t) = x(t) +△t · [ẋ(t) +△t · ẍ(t)] = x(t) +△t · ẋ(t) +△t2 · ẍ(t)

Expression à comparer à celle que l’on obtiendrait en effectuant un développement limité à l’ordre deux :

x(t+△t) = x(t) +△t · ẋ(t) + 1

2
· △t2 · ẍ(t)

La méthode choisie ajoute, par rapport au développement limité à l’ordre deux, le terme : 1
2 · △t2 · ẍ(t), ce qui

compense partiellement le terme d’ordre deux impossible à obtenir dans le calcul de la vitesse. Comme nous allons
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le constater, ces deux erreurs se compensent assez bien, du moins dans ce genre de simulation. Dans le fichier sur
tableur, il suffit juste de modifier les colonnes B et C : en B4, cela donne : =B3+F$1*D4 ; en C4 cela donne :
=C3+F$1*E4.

Voici les résultats obtenus avec un pas de calcul égal à△t = T
720 :
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L’amélioration est spectaculaire : la trajectoire est fermée et l’erreur relative ne dépasse pas 0,43%. Nous allons
retenir cette méthode pour la suite même si d’autres méthodes sont encore plus performantes...

3. Équation différentielle régissant le mouvement du satellite au voisinage du point L1 dans le repère
tournant (R’). Le raisonnement sur les équipotentielles étudiées précédemment n’est pas suffisant. Il faut aussi
tenir compte de la pseudo force d’inertie de Coriolis. Ce sont donc quatre forces à prendre en compte pour obtenir
l’expression de l’accélération. Nous avons déjà montré que les trois forces conservatives tendant à ramener le satellite
dans le plan de l’écliptique. Nous allons nous limiter au mouvement du satellite S dans ce plan. Rappelons les
expressions des quatre forces.

La force gravitationnelle exercée par le soleil :

−→
FS = −GmMS

−→
OS

∥
−→
OS∥3

= −GmMS · (a− L+ x)−→·ux + y · −→uy[
(a− L+ x)

2
+ y2

] 3
2

La force gravitationnelle exercée par la terre :

−→
FT = −GmMT

−→
TS

∥
−→
TS∥3

= −GmMT · (x− L) · −→ux + y · −→uy[
(x− L)

2
+ y2

] 3
2

La pseudo force d’inertie centrifuge :

−→
Fie = mΩ2 ·

−−→
HS = mΩ2 ·

[(
a · MS

MS +MT
− L+ x

)
· −→ux + y · −→uy

]
La pseudo force d’inertie de Coriolis :
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−→
Fic = −2mΩ−→uz ∧

−→
V = −2mΩ−→uz ∧ (ẋ · −→ux + ẏ · −→uy) = 2mΩ · (ẏ · −→ux − ẋ · −→uy)

Les coordonnées du vecteur accélération de S dans (R’) sont donc :
ẍ = −GMS · (a−L+x)

[(a−L+x)2+y2]
3
2
−GMT · (x−L)

[(x−L)2+y2]
3
2
+Ω2 ·

(
a · MS

MS+MT
− L+ x

)
+ 2Ω · ẏ

ÿ = −GMS · y

[(a−L+x)2+y2]
3
2
−GMT · y

[(x−L)2+y2]
3
2
+Ω2 · y − 2Ω · ẋ

Il s’agit donc de résoudre numériquement le système d’équations différentielles ci-dessus. Nous utilisons la mé-
thode d’Euler améliorée déjà décrite. Il suffit d’entrer dans les colonnes F et G du tableur les expressions des
composantes ẍ et ÿ ci-dessus. Les trajectoire sont très variées selon les conditions initiales.

Voici un premier exemple d’une simulation sur une durée de deux ans, avec une vitesse initiale nulle et des
coordonnées initiales : x0 = 0, 15RT ≈ 957km ; y0 = 0, 1RT ≈ 638km. La croix rouge correspond au point L1
et la croix verte au centre T de la terre.
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L’analyse des équipotentielles montre qu’à l’instant initial, la somme des trois forces conservatives à une com-
posante Fx orientée vers la terre et une composante Fy orientée vers l’axe (OT). Bien sûr, dès que le satellite prend
de la vitesse, l’influence de la pseudo force de Coriolis se fait sentir et modifie la direction du vecteur vitesse. Le
caractère instable de L1 est confirmé : le satellite s’éloigne définitivement de L1 et vient graviter autour de la terre.

Voici un second exemple d’une simulation sur une durée de 5mois correspondant à des conditions initiales proches
de celles du satellite d’observation SOHO :x0 = 0 ; y0 = −666672km ; vx0 = −22, 5m/s ; vy0 = 0.
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On remarque que, pour des conditions initiales bien particulières, il est possible d’obtenir pendant un peu plus
de trois mois, un mouvement autour de L1 sans apport d’énergie. Des correctifs de trajectoire sont alors nécessaires,
sinon le satellite s’éloigne définitivement de L1. Mais l’énergie à fournir pour maintenir le satellite au voisinage de
L1 est relativement réduite par rapport à celle qu’il faudrait fournir à un satellite d’observation situé à la même
distance de la terre très loin de L1. À partir des mêmes conditions initiales, une simulation menée sur une durée de
20 ans montre que le satellite finit par tourner autour du soleil dont le centre est matérialisé par la croix noire, la
croix rouge correspondant à L1.
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V. POSITION DU POINT DE LAGRANGE L4.
Deux points de Lagrange, notés L4 et L5, existent en dehors de l’axe (OT). Ils appartiennent, comme déjà

démontré, au plan de l’écliptique, et sont aux sommets des deux triangles équilatéraux dont T et O sont les autres
sommets. Ces deux points sont symétriques par rapport à l’axe (OT) et ont les mêmes propriétés. Nous allons donc
étudier seulement l’un des deux : le point L4. Commençons par démontrer que cette position est bien une position
d’équilibre.

O G L1 T
x’

y’
Uz

(R’)

Ux

Uy

Fs

F
T

Fie

L4

rr
S T

Soit (X,Y) les coordonnées de L4 dans le repère tournant (R’) = (G,x’,y’) et rS et rT les distances de L4 au
centre O du soleil et au centre T de la terre. Les trois forces appliquées au satellite S de masse m, immobile dans
(R’), ont déjà été explicitées :

−→
FS = −mGMS

−→
OS

∥
−→
OS∥3

= −GMS

r3S
[(X +OG) · −→ux + Y · −→uy]

−→
FT = −mGMT

−→
TS

∥
−→
TS∥3

= −GMT

r3T
[(X −GT ) · −→ux + Y · −→uy]
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−→
Fie = mΩ2 ·

−→
GS = m

GMS +GMT

a3
[X · −→ux + Y · −→uy]

À l’équilibre de S :

−→
Fie +

−→
FT +

−→
FS =

−→
0

Projetons cette relation sur l’axe (Gy’) en divisant tous les termes par m, grandeur strictement positive :

Y ·
[
GMS

(
1

a3
− 1

r3S

)
+GMT

(
1

a3
− 1

r3T

)]
= 0

Puisque, par hypothèse, L4 n’est pas sur l’axe (OT) : Y ̸= 0. L’égalité ci-dessus est donc satisfaite pour :

rS = a = rT

Vérifions que, dans ces conditions, la projection des trois forces sur l’axe (G,x’) est bien nulle. Cette projection,
après division de tous les termes par m, conduit à :

GMS

a3
(X −X) +

GMT

a3
(X −X)− G

a3
(MS ·OG−MT ·GT )

Les deux premiers termes de cette somme sont évidemment nuls. G étant le barycentre des points O et T, le
troisième est également nul.

Conclusion : le point L4 situé dans le plan de l’écliptique au sommet du triangle équilatéral dont
O et T sont les autres sommets est bien une position d’équilibre.

VI. INSTABILITÉ DE LA POSITION L4.
Qualitativement, il est assez simple de prévoir une instabilité de cette position. Imaginons que S s’éloigne de la

terre et du soleil : les deux forces gravitationnelles diminuent d’intensité alors que la pseudo force d’inertie centrifuge
augmente d’intensité : le satellite va donc s’éloigner encore plus de la terre et du soleil. Cependant, une étude précise
passe par l’étude de l’énergie potentielle. Nous allons nous limiter à une étude dans le plan de l’écliptique.

Dans le repère (G,x’,y’) les coordonnées de L4 sont :{
X = a

2 −OG X = a
2 − a · MT

MT+MS
= a · MS−MT

2(MT+MS)

Y = a · sin (60°) Y = a ·
√
3
2

On pose :

−−→
L4S = x · −→ux + y · −→uy

1. Énergie potentielle associée à la force gravitationnelle exercée par le soleil.

Ep1 = −GmMS

∥
−→
OS∥

−→
OS =

−−→
OL4 +

−−→
L4S =

(a
2
+ x
)−→·ux +

(
a ·

√
3

2
+ y

)
· −→uy

Ep1 = − GmMS√(
a
2 + x

)2
+
(
a ·

√
3
2 + y

)2
2. Énergie potentielle associée à la force gravitationnelle exercée par la terre.

Ep2 = −GmMT

∥
−→
TS∥

−→
TS =

−−→
TL4 +

−−→
L4S =

(
x− a

2

)
· −→ux +

(
a ·

√
3

2
+ y

)
· −→uy

Ep2 = − GmMT√(
x− a

2

)2
+
(
a ·

√
3
2 + y

)2
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3. Énergie potentielle associée à la pseudo force d’inertie centrifuge.

Ep3 = −1

2
m · Ω2 · ∥

−→
GS∥2

−→
GS =

−−→
GL4 +

−−→
L4S =

(
a · MS −MT

2 (MT +MS)
+ x

)
· −→ux +

(
a ·

√
3

2
+ y

)
· −→uy

Ep3 = −1

2
m · Ω2 ·

(a · MS −MT

2 (MT +MS)
+ x

)2

+

(
a ·

√
3

2
+ y

)2


4. Variations d’énergie potentielle au voisinage du point L4. L’expression générale de l’énergie potentielle
de S est proportionnelle à la masse m de S. Désormais, nous nous intéresserons à l’énergie potentielle massique de
S :

ep = − GMS√(
a
2 + x

)2
+
(
a ·

√
3
2 + y

)2− GMT√(
x− a

2

)2
+
(
a ·

√
3
2 + y

)2−1

2
Ω2·

(a · MS −MT

2 (MT +MS)
+ x

)2

+

(
a ·

√
3

2
+ y

)2


Comme pour l’étude de L1, nous allons tracer quelques courbes équipotentielles au voisinage du point L2 dans
un carré de côté 2RT . Les valeurs de (△ep = ep−ep(L4)) sont indiquées à côté des courbes, la croix rouge correspond
au point L4.
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Comme déjà expliqué, la résultante des trois forces étudiées précédemment a pour expression :

−→
F = −m ·

−−→
grad (ep)

Cette résultante en un point est donc orientée selon la normale à l’équipotentielle passant par ce point dans le
sens des énergies potentielles décroissantes. On constate que L4 correspond à un maximum d’énergie potentielle.
L4 est donc une position d’équilibre instable pour un satellite S.
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L’allure des équipotentielles se justifie simplement au voisinage du point L4. Au voisinage de ce point, les distantes
TS et OS sont du même ordre de grandeur alors que la masse du soleil est environ 333000fois plus importante que
celle de la terre : la force gravitationnelle exercée par la terre est totalement négligeable devant les deux autres forces
qui se trouvent ainsi quasiment colinéaires et de sens inverses, puisque les points G et O sont quasiment confondus.
Cela confirme les résultats qualitatifs obtenus précédemment.

VII. SIMULATION DU MOUVEMENT D’UN SATELLITE AU VOISI-
NAGE DE L4.

Explicitons les quatre vecteurs forces appliquées à S dans son mouvement au voisinage de L4.
La force gravitationnelle exercée par le soleil :

−→
FS = −GmMS

−→
OS

∥
−→
OS∥3

= −GmMS ·

(
a
2 + x

)−→·ux +
(
a ·

√
3
2 + y

)
· −→uy[(

a
2 + x

)2
+
(
a ·

√
3
2 + y

)2] 3
2

La force gravitationnelle exercée par la terre :

−→
FT = −mGMT

−→
TS

∥
−→
TS∥3

= −mGMT ·

(
x− a

2

)
· −→ux +

(
a ·

√
3
2 + y

)
· −→uy[(

x− a
2

)2
+
(
a ·

√
3
2 + y

)2] 3
2

La pseudo force d’inertie centrifuge :

−→
Fie = mΩ2 ·

−→
GS = mΩ2 ·

[(
a · MS −MT

2 (MT +MS)
+ x

)
· −→ux +

(
a ·

√
3

2
+ y

)
· −→uy

]
La pseudo force de Coriolis :

−→
Fic = −2mΩ−→uz ∧

−→
V = −2mΩ−→uz ∧ (ẋ · −→ux + ẏ · −→uy) = 2mΩ · (ẏ · −→ux − ẋ · −→uy)

Les coordonnées du vecteur accélération de S dans (R’) sont donc :


ẍ = −GMS · ( a

2+x)[
( a

2+x)
2
+
(
a·

√
3

2 +y
)2

] 3
2
−GMT · (x− a

2 )[
(x− a

2 )
2
+
(
a·

√
3

2 +y
)2

] 3
2
+Ω2 ·

(
a · MS−MT

2(MT+MS) + x
)
+ 2Ω · ẏ

ÿ = −GMS ·
(
a·

√
3

2 +y
)

[
( a

2+x)
2
+
(
a·

√
3

2 +y
)2

] 3
2
−GMT ·

(
a·

√
3

2 +y
)

[
( a

2+x)
2
+
(
a·

√
3

2 +y
)2

] 3
2
+Ω2 ·

(
a ·

√
3
2 + y

)
− 2Ω · ẋ

Il s’agit donc de résoudre numériquement le système d’équations différentielles ci-dessus par la méthode d’Euler
améliorée déjà utilisée pour la simulation du mouvement autour de L1. Il suffit d’entrer dans les colonnes F et G
du tableur les expressions des composantes ẍ et ÿ ci-dessus.

Voici un premier exemple d’une simulation sur une durée de cinq ans, avec pour instant initial un passage par
L4 avec un vecteur vitesse initiale de coordonnées (100m/s, 173m/s). La croix rouge correspond au point L1.
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Voici un second exemple de simulation sur une durée de 40ans, l’instant initial correspondant à :

x0 = 50RT ; y0 = 100RT ; vx0 = 0 ; vy0 = 100m/s
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Les trajectoire sont très variées selon les conditions initiales. Elles ont cependant une caractéristique commune :
si le satellite commence toujours par s’éloigner très loin du point L4, confirmant ainsi le caractère instable
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de cette position, il finit toujours par repasser à intervalles de temps plus ou moins longs, au voisinage de cette
position. Cette propriété différencie fortement les points L4 et L5 des trois autres, ce qui fait dire à certains auteurs
que les positions L4 et L5 sont stables. Il s’agit d’une affirmation infondée puisqu’une position d’équilibre stable
correspond nécessairement à un minimum local d’énergie potentielle...

VIII. Points de Lagrange L2 et L3.
1. Point de Lagrange L2. Il s’agit du point situé sur l’axe (OT), à l’extérieur du segment [O,T] côté terre. La
recherche de ce point se fait de manière analogue à la recherche de la position L1. Il suffit d’écrire que la somme
des trois forces appliquées au satellite immobile dans le repère (R’) tournant est nulle :

−→
Fie +

−→
FT +

−→
FS =

−→
0

O G L1 T

y’
Uz

Fs

FT

Fie

(R’)

Ux

Uy

L2

Fs

F

Fie

T
L3

Fs

F
T

Fie
x’

Les vecteurs étant colinéaires, la condition d’équilibre s’écrit :

∥
−→
FS∥+ ∥

−→
FT ∥ = ∥

−→
Fie∥

Si on note L’ la distance du centre T de la terre au point L2 on obtient :

∥
−→
FS∥ =

mGMS

(a+ L′)
2 ; ∥

−→
FT ∥ =

mGMT

L′2 ; ∥
−→
Fie∥ = mΩ2 (a+ L′ −OG) = mΩ2

(
a

MS

MS +MT
+ L′

)
GMS

(a+ L′)
2 − GMT

L′2 − Ω2

(
a

MS

MS +MT
+ L′

)
= 0

GMSL
′2 +GMT (a+ L′)

2 − Ω2

(
a

MS

MS +MT
+ L′

)
L′2 (a+ L′)

2
= 0

Une résolution numérique conduit à :

L′ = 1, 50.109m

Cette valeur est très proche de a/100 et donc de L : les points L2 et L3 sont sensiblement à la même distance
du centre de la terre. L’étude de l’énergie potentielle, analogue à celle faite pour L1, montre que cette position L2
correspond à un maximum local d’énergie potentielle : la position L2 est donc une position d’équilibre instable. Elle
a cependant un intérêt pratique : y maintenir des satellites d’observation nécessite de l’énergie puisque l’équilibre
est instable mais cette énergie est nettement plus faible qu’en absence d’équilibre. À partir de L2, il est possible
d’observer le ciel profond avec une gêne très faible du rayonnement solaire.

1. Point de Lagrange L3. Cette position est sur l’axe (OT), en dehors du segment [O,T] mais côté soleil
(voir figure du paragraphe précédent). La recherche de cette position se mène comme précédemment puisque les
trois vecteurs forces à prendre en compte sont colinéaires. Seuls les sens des vecteurs forces peuvent subir des
modifications. La condition d’équilibre s’écrit :

∥
−→
FS∥+ ∥

−→
FT ∥ = ∥

−→
Fie∥

Si on note L” la distance de L3 au centre O du soleil, on obtient :

∥
−→
FS∥ =

mGMS

L”2
; ∥

−→
FT ∥ =

mGMT

(a+ L”)
2 ; ∥

−→
Fie∥ = mΩ2 (L” +OG) = mΩ2

(
a

MT

MS +MT
+ L”

)
mGMS

L”2
+

mGMT

(a+ L”)
2 = mΩ2

(
a

MT

MS +MT
+ L”

)

GMS (a+ L”)
2
+GMTL”

2 − Ω2

(
a

MT

MS +MT
+ L”

)
L”2 (a+ L”)

2
= 0
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Une résolution numérique conduit à :

L” = 1, 50.1011m

On remarque que cette valeur est très proche de a, la distance (OT). On peut facilement montrer qualitativement
le caractère instable de cette position : imaginons un petit déplacement à partir de L3 correspondant à un éloignement
du soleil. Les deux forces gravitationnelles diminue alors que la pseudo force d’inertie centrifuge augmente. La
résultante de ces trois forces tend à éloigner le satellite de S. Ce caractère instable est confirmé par l’étude de
l’énergie potentielle : L3 correspond à un maximum local de cette énergie.

retour à la page principale
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